用户名: 密码: 验证码:
高含水原油物性及流动规律研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Physical Properties and Flow Laws of High Water-cut Crude Oil
  • 作者:吴停 ; 庞永莉 ; 白剑锋 ; 王智 ; 李昂 ; 吴海浩
  • 英文作者:WU Ting;PANG Yongli;BAI Jianfeng;WANG Zhi;LI Ang;WU Haihao;National Engineering Laboratory for Oil and Gas Pipeline Transportation Safety, China University of Petroleum (Beijing) /Petroleum Engineering Key Laboratory of Ministry of the Education/Beijing Key Laboratory of Urban Oil and Gas Transmission and Distribution Technology;Xi'an Changqing Technology Engineering Co.,Ltd.;
  • 关键词:高含水原油 ; 黏温特性 ; 反相 ; 压降 ; 模型
  • 英文关键词:high water-cut crude oil;;viscosity-temperature characteristics;;inverse-phase;;pressure drop;;model
  • 中文刊名:YQTD
  • 英文刊名:Oil-Gas Field Surface Engineering
  • 机构:中国石油大学(北京)油气管道输送安全国家工程实验室/石油工程教育部重点实验室/城市油气输配技术北京市重点实验室;西安长庆科技工程有限责任公司;
  • 出版日期:2019-01-20
  • 出版单位:油气田地面工程
  • 年:2019
  • 期:v.38;No.329
  • 基金:国家自然科学基金“含蜡原油常温输送机理及流动性方法研究”(51534007)
  • 语种:中文;
  • 页:YQTD201901007
  • 页数:7
  • CN:01
  • ISSN:23-1395/TE
  • 分类号:35-41
摘要
为了得到油田现场中高含水后期原油水两相流动规律,选取长庆某典型高含水原油,测量其基本物性及反相点,改进了适合易乳化原油的反相预测模型,对比了不同温度下表观黏度反相前后的差异。结合油水两相管流环道实验,得到了不同含水率下压降与流量的关系,分析了压降预测结果和实验结果的误差。结果表明,该原油在低于凝点(26.0℃)且水为连续相时表现出较强的剪切稀释性,高于凝点时,反相前温度对体系黏度的影响起主导作用,而在反相后温度对体系黏度的影响不大。改进反相预测模型能较好地预测高含水原油的反相点。反相前,压降随着含水率的升高而增大,反相后压降出现骤降。高含水原油的基本物性与流动规律的研究为油田的安全高效生产提供了一定的理论指导。
        In order to obtain the oil-water two-phase flow laws at the later stage of high water-cut in oilfields, a kind of typical high water-cut crude oil in Changqing Oilfield is selected, and its basic physical properties and inverse-phase points are measured. The inverse-phase prediction model for emulsifiable crude oil is improved,and the differences of apparent viscosity before and after inversion at different temperatures are compared. Based on the oil-water two-phase pipe flow loop experiment,the relationship between the pressure drop and flow under different water-cut is obtained, and errors between the pressure drop prediction results and experiment results are analyzed. The results show that the crude oil shows strong shear thinning property below its gel point(26.0 °C) and when water is the continuous phase. When the temperature is above the gel point,the temperature before inversion plays a leading role on the viscosity of the system, while it has little effect after inversion. The improvement of the inverse-phase prediction model can well predict the inversion point of high water-cut crude oil.The pressure drop increases with increasing water-cut before inversion while it drops sharply after inversion. The study of the basic physical properties and flow rules of high water-cut crude oil provides certain theoretical guidance for the safe and efficient production in oilfields.
引文
[1]姚海元.油-水两相管流流动规律研究[D].北京:中国石油大学(北京),2005:20-41.YAO Haiyuan.Study on the flow laws of oil-water twophase pipe flow[D].Beijing:China University of Petroleum(Beijing),2005:20-41.
    [2]窦丹.原油-水乳状液物性及管流反相规律研究[D].北京:中国石油大学(北京),2007:9-74.DOU Dan.Study on the physical properties of crude oil-water emulsion and the inverse-phase laws of pipe flow[D].Beijing:China University of Petroleum(Beijing),2007:9-74.
    [3]陈杰.油-水两相管流流动规律的研究[D].北京:中国石油大学(北京),2001:39-130.CHEN Jie.Study on the flow laws of oil-water two-phase pipe flow[D].Beijing:China University of Petroleum(Beijing),2001:39-130.
    [4]蔡继勇,陈听宽.水平管内油水乳状液流动特性研究[J].化学工程,1999,27(3):32-35.CAI Jiyong,CHEN Tingkuan.Study on flow characteristics of oil-water emulsion in horizontal pipe[J].Chemical Engineering,1999,27(3):32-35.
    [5]胡志华,刘磊,周芳德,等.油水两相乳化液流动特性的实验研究[J].上海交通大学学报,2005,39(2):314-316.HU Zhihua,LIU Lei,ZHOU Fangde,et al.Experimental study on flow characteristics of oil-water two-phase emulsion[J].Journal of Shanghai Jiaotong University,2005,39(2):314-316.
    [6]ANGELI P,HEWITT G F.Drop size distributions in horizontal oil-water dispersed flows[J].Chemical Engineering Science,2000,55(16):3133-3143.
    [7]SIMMONS M,AZZOPARDI B J.Drop size distributions in dispersed liquid-liquid pipe flow[J].International Journal of Multiphase Flow,2001,27(5):843-859.
    [8]GODFREY J C,OBI F I N,REEVE R N.Measuring drop size in continous liquid-liquid mixers[J].Chemical Engineering Progress,1989,85(12):61-69.
    [9]TRALLERO J L,SARICA C,BRILL J P.A study of oilwater flow patterns in horizontal pipes[J].SPE Production and Facilities,1997,12(3):165-172.
    [10]BANNWART A C,RODRIGUEZ O M H,CARVALHO CH M D,et al.Flow patterns in heavy crude oil-water flow[J].Journal of Energy Resources Technology,2004,126(3):184-189.
    [11]ANGELI P,HEWITT G F.Flow structure in horizontal oil-water flow[J].International Journal of Multiphase Flow,2000,26(7):1117-1140.
    [12]YAO H Y,GONG J.An experimental investigation on the pressure drop of heavy oil-water two phase horizontal pipe flow[J].Journal of Hydrodynamics,2005,20(2):174-179.
    [13]MCKIBBEN M J,GILLIES R G,SHOOK C A.Predicting pressure gradients in heavy oil-water pipelines[J].Canadian Journal of Chemical Engineering,2000,78(4):752-756.
    [14]MARTINEZ A E,ARIRACHAKARAN S,SHOHAM O,et al.Prediction of dispersion viscosity of oil/water mixture flow in horizontal pipes[J].International Journal of Multiphase Flow,1988,34(10):950-965.
    [15]PAL R.Pipeline flow of unstable and surfactant-stabilized emulsions[J].AICHE Journal,1993,39(11):1754-1764.
    [16]ANGELI P,HEWITT G F.Pressure gradient in horizontal liquid-liquid flows[J].International Journal of Multiphase Flow,1999,24(7):1183-1203.
    [17]BERETTA A,FERRARI P,GALBIATI L,et al.Horizontal oil-water flow in small diameter tubes.Pressure drop[J].International Communications in Heat&Mass Transfer,1997,24(2):223-229.
    [18]YEO L Y,MATAR O K,ORTIZ E S P D,et al.A simple predictive tool for modelling phase inversion in liquidliquid dispersions[J].Chemical Engineering Science,2002,57(6):1069-1072.
    [19]ARIRCHAKARAN S,OGLESBY K D,MALINOWSKYM S,et al.An analysis of oil/water flow phenomena in horizontal pipes[J].Spe Production Operations Symposium,1989,21(1):123-133.
    [20]王玮.油水混合液物性及流动规律研究[D].北京:中国石油大学(北京),2009:19-54.WANG Wei.Study on physical properties and flow laws of oil-water mixture[D].Beijing:China University of Petroleum(Beijing),2009:19-54.
    [21]黄启玉,苗青.原油析蜡量和结蜡量关系的研究[J].油气储运,2009,28(4):48-50.HUANG Qiyu,MIAO Qing.Study on the relationship between the amount of wax produced by crude oil and the amount of wax produced[J].Oil&Gas Storage and Transportation,2009,28(4):48-50.
    [22]刘晓燕,王露,崔晓琳,等.基线选取对DSC法测试原油含蜡量的影响[J].油气储运,2017,36(7):795-799.LIU Xiaoyan,WANG Lu,CUI Xiaolin,et al.Effect of baseline selection on wax content of crude oil measured by DSC method[J].Oil&Gas Storage and Transportation,2017,36(7):795-799.
    [23]N?dler M,Mewes D.Flow induced emulsification in the flow of two immiscible liquids in horizontal pipes[J].International Journal of Multiphase Flow,1997,23(1):55-68.
    [24]DECARRE S,FABRE J.Phase inversion prediction study[J].Oil&Gas Science&Technology,1997,52(4):415-424.
    [25]BRAUNER N,ULLMANN A.Modeling of phase inversion phenomenon in two-phase pipe flows[J].International Journal of Multiphase Flow,2002,28(7):1177-1204.
    [26]MARDLES E W J.Viscosity of suspensions and the Einstein Equation[J].Nature,1940,145:970.
    [27]BRINKMAN H C.The viscosity of concentrated suspensions and solutions[J].Journal of Chemical Physics,1952,20(4):571.
    [28]PAL R,RHODES E.Viscosity/concentration relationships for emulsions[J].Journal of Rheology(1978-present),1989,33(7):1021-1045.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700