用户名: 密码: 验证码:
纤维增强复合薄壳固有特性计算及验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Natural Characteristic Calculation and Verification of FRCS
  • 作者:周正学 ; 李晖 ; 薛鹏程 ; 吴怀帅 ; 陈姝瑶
  • 英文作者:ZHOU Zhengxue;LI Hui;XUE Pengcheng;WU Huaishuai;CHEN Shuyao;School of Mechanical Engineering and Automation,Northeastern University;College of Sciences,Northeastern University;
  • 关键词:纤维增强复合薄壳 ; 固有特性 ; 悬臂边界 ; 正交多项式
  • 英文关键词:fiber reinforced composite thin shell(FRCS);;natural characteristic;;cantilever boundary;;orthogonal polynomial
  • 中文刊名:ZGJX
  • 英文刊名:China Mechanical Engineering
  • 机构:东北大学机械工程与自动化学院;东北大学理学院;
  • 出版日期:2018-05-24 15:29
  • 出版单位:中国机械工程
  • 年:2018
  • 期:v.29;No.490
  • 基金:国家自然科学基金资助项目(51505070);; 中央高校基本科研业务费专项资金资助项目(N150304011,N160313002)
  • 语种:中文;
  • 页:ZGJX201810018
  • 页数:6
  • CN:10
  • ISSN:42-1294/TH
  • 分类号:104-109
摘要
对悬臂纤维增强复合薄壳的固有特性进行了计算及实验验证。针对纤维增强复合薄壳的结构特点,对其进行了理论建模;通过Rayleigh-Ritz法获得了复合薄壳的固有频率和振型结果;以T300碳纤维/树脂基复合薄壳为例,通过实验测试获得了前8阶固有频率和模态振型。验证结果表明求解的纤维增强复合薄壳固有频率计算结果与实验结果的误差在2.2%~9.3%之间,且两种方法获得的振型结果也吻合,验证了所提出的计算方法的正确性。
        Natural characteristics of FRCS under cantilever boundary were calculated and verified by experiments. Firstly,a theoretical model of FRCS was established by considering the structural characteristics.Then,the natural frequency and mode shape of FRCS were obtained by Rayleigh-Ritz method. Finally,T300 fiber/epoxy composite shell was taken as a study object,and the natural frequency and mode shape were measured by experimental tests. The results show that the errors of the natural frequencies from calculations and experiments are within the range of 2.2%~9.3%,the calculation results of the mode shapes are also consistent with the experimental ones,thus the correctness of proposed method was verified.
引文
[1]牛义,刘权利,常永乐,等.基于Ritz法的纤维增强复合薄板阻尼分析与预测[J].中国工程机械学报,2016,14(2):162-167.NIU Yi,LIU Quanli,CHANG Yongle,et al.Damping Analysis on Fiber-reinforced Composite Thin Plate on Ritz Method[J].Chinese Journal of Construction Machinery,2016,14(2):162-167.
    [2]崔海坡,温卫东.复合材料层合板冲击损伤影响因素分析[J].中国机械工程,2008,19(5):613-617.CUI Haipo,WEN Weidong.Influence Factor Analysis for Impact Damage of Composite Laminates[J].China Mechannical Engineering,2008,19(5):613-617.
    [3]QATU M S,SULLIVAN R W,WANG W.Recent Research Advances on the Dynamic Analysis of Composite Shells:2000-2009[J].Composite Structures,2010,93(1):14-31.
    [4]薛鹏程,李晖,常永乐,等.悬臂边界下纤维增强复合薄板固有频率计算及验证[J].航空动力学报,2016,31(7):1754-1760.XUE Pengcheng,LI Hui,CHANG Yongle,et al.Natural Frequency Calculation and Validation of Fiber Reinforced Composite Thin Plate under Cantilever Boundary[J].Journal of Aerospace Power,2016,31(7):1754-1760.
    [5]YOKOYAMA N O,DONADON M V,ALMEIDA S D.A Numerical Study on the Impact Resistance of Composite Shells Using an Energy Based Failure Model[J].Composite Structures,2011,93(1):142-152.
    [6]XU W,WAAS A M.A Novel Shell Element for Quasi-static and Natural Frequency Analysis of Textile Composite Structures[J].Journal of Applied Mechanics,2014,81(8):081002.
    [7]SON B J,JI H S,CHANG S Y.A Study on Edge Reinforcement Effect of Cylindrical Shells with Composite Laminate[J].The Journal of the Korean Society for Advanced Composite Structures,2012,3(2):47-54.
    [8]AZARAFZA R,KHALILI S M R,JAFARI A A,et al.Analysis and Optimization of Laminated Composite Circular Cylindrical Shell Subjected to Compressive Axial and Transverse Transient Dynamic Loads[J].Thinwalled Structures,2009,47(8/9):970-983.
    [9]LI H,SUN W,ZHAI J,et al.Precise Measurement of Natural Frequencies and Mode Shapes of Cantilever Thin Cylindrical Shell[J].Journal of Vibration Engineering&Technologies,2015,3(4):513-537.
    [10]RIBEIRO P.On the Influence of Membrane Inertia and Shear Deformation on the Geometrically Non-linear Vibrations of Open,Cylindrical,Laminated Clamped Shells[J].Composites Science&Technology,2009,69(2):176-185.
    [11]HASHEMIAN A H,KARGARNOVIN M H,JAM J E.Accurate Calculation of the Natural Frequencies of Reticulated and Solid Cylindrical Composite Shells[J].Applied Mechanics&Materials,2011,110/116:4598-4606.
    [12]CHEN H S,LI T Y,ZHU X,et al.Analysis of Natural Frequency of Free Damping Composite Cylindrical Shell Submerged in Viscous Fluids[J].Materials Research Innovations,2015,18(2):971-977.
    [13]宋旭圆.层合薄壁圆柱壳结构的非线性振动特性研究[D].大连:大连理工大学,2016.SONG Xuyuan.Nonlinear Vibration Characteristics of Laminated Thin-walled Cylindrical Shell[D].Dalian:Dalian University of Technology,2016.
    [14]项爽.旋转功能梯度材料圆柱壳的振动特性研究[D].河南科技大学,2013.XIANG Shuang.Free Vibration of Rotating Functionally Graded Cylindrical Shells[D].Luoyang:Henan University of Science and Technology,2013.
    [15]李学斌.悬臂正交各向异性圆柱壳的自由振动分析[J].舰船科学技术,2008,30(1):41-44.LI Xuebin.Free Vibration of Cantilever Orthotropic Circular Cylindrical Shell[J].Journal of Ship Science and Technology,2008,30(1):41-44.
    [16]戴亦俊.含液体分层复合材料薄壁圆柱壳振动分析[D].沈阳:东北大学,2010.DAI Yijun.The Nonlinear Vibration Analysis of the Multi-layered Thin-cylindrical Shell Filled with Fluid[D].Shenyang:Northeastern University,2010.
    [17]楼玲娜.复合材料薄壁圆柱壳的非线性振动研究[D].沈阳:东北大学,2009.LOU Linna.The Nonlinear Vibration Analysis of Composite Thin Cylindrical Shell[D].Shenyang:Northeastern University,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700