用户名: 密码: 验证码:
单脉冲固体姿态控制发动机内流场与燃面退移耦合数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Coupled Simulation of Internal Flow Field and Burning Surface Regression in a Single-Pulse Solid Attitude Control Motor
  • 作者:周伟 ; 谢飞 ; 李赛
  • 英文作者:ZHOU Wei;XIE Fei;LI Sai;Department of Power Engineering,Rocket Force University of Engineering;
  • 关键词:单脉冲 ; 固体姿态控制发动机 ; 燃面退移 ; 面偏移法 ; 耦合数值模拟
  • 英文关键词:Single-pulse;;Solid attitude control motor;;Burning surface regression;;Face-offsetting method;;Coupled simulation
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:火箭军工程大学动力工程系;
  • 出版日期:2019-01-15
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.259
  • 基金:国家“九七三”项目(97361338)
  • 语种:中文;
  • 页:TJJS201901013
  • 页数:8
  • CN:01
  • ISSN:11-1813/V
  • 分类号:113-120
摘要
为解决单脉冲固体姿态控制发动机内流场与推进剂燃面退移耦合的问题,给出了耦合方法的理论基础,建立了基于动网格的双向耦合模型。采用面偏移法处理燃面退移过程,利用网格平顺与网格重建技术优化网格,解决网格变形问题;通过松耦合方式进行耦合计算。针对PAC-3增程拦截弹使用的单脉冲固体姿态控制发动机,进行了内流场与推进剂燃面退移耦合数值模拟,得到了该发动机内弹道特性曲线及其它性能参数。结果表明,PAC-3单脉冲固体姿态控制发动机仿真结果与相关实验结果吻合较好,计算得到燃烧室压强最大相对误差为3.96%。面偏移法能够有效追踪推进剂燃面,建立的耦合方法能够对内流场与推进剂燃面退移耦合过程进行准确稳定的模拟,为单脉冲固体姿态控制发动机多物理模型耦合模拟提供了有效的解决方案。
        To deal with the problem of propellant burning surface regression coupled with flow field in a single-pulse solid attitude control motor,a theoretical basis of the coupling method was given to establish a bidirectional coupled simulation model based on dynamic mesh.Face-offsetting method was utilized for modeling the propellant burning surface regression.The mesh was optimized by mesh smoothing and rebuilding techniques for solving the deformation of fluid meshes.The coupling process was calculated by using loosely coupled method.A numerical coupled simulation between internal flow field and burning surface regression for the single-pulse solid attitude control motor used in the PAC-3 extended range interceptor missile was carried out by the coupling method.The internal trajectory and other various parameters were obtained.The results are consistent with related experimental results.The maximum relative error of chamber pressure is 3.96%.Face-offsetting method can effectively track the regression of the propellant burning surface.The coupled method can accurately and stably simulate the coupling process between the internal flow field and the propellant surface regression,which can be used for providing an effective solution to the multi-physics coupling of single-pulse solid attitude control motor.
引文
[1]Sutton G P,Biblarz O.Rocket Propulsion Elements,8th Edition[J].Services Marketing People Technology Strategy,2010,8(2):475-477.
    [2]严万洪,张炜,周星,等.MA/HTPB/石蜡燃料燃面退移速率测试方法及调节研究[J].推进技术,2016,37(4):769-775.(YAN Wan-hong,ZHANGWei,ZHOU Xing,et al.Measurement and RegressionRate Modification of MA/HTPB/Paraffin Fuels[J].Journal of Propulsion Technology,2016,37(4):769-775.)
    [3]Chung T J.Computational Fluid Dynamics[M].Cambridge:Cambridge University Press,2002.
    [4]Ferziger J H,Peri?M.Computational Methods for Fluid Dynamics[J].Physics Today,1997,50(3):80-84.
    [5]陈步学,王凌燕,吴心平.星孔装药燃面退移图形显示研究[J].推进技术,1996,17(6):33-38.(CHENBu-xue,WANG Ling-yan,WU Xin-ping.Study on Graphic Display of Burning Surface Regression for Star Perforation Grain[J].Journal of Propulsion Technology,1996,17(6):33-38.)
    [6]陈步学,王凌燕,吴心平.星孔装药燃面退移图象显示中的特殊问题[J].推进技术,1997,18(4):46-50.(CHEN Bu-xue,WANG Ling-yan,WU Xin-ping.Special Problems on Graphic Display of Burning Surface Regression of Star Perforation Grains[J].Journal of Propulsion Technology,1997,18(4):46-50.)
    [7]张世英,孙振生.移动网格技术在求解固体火箭发动机侵蚀流场中的应用[J].弹箭与制导学报,2006,26(4):204-206.
    [8]谢丽宽,马拯,俞红博,等.基于燃面推移的内流场数值仿真[J].弹箭与制导学报,2007,27(3):179-182.
    [9]Osher S,Fedkiw R.Level Set Methods and Dynamic Implicit Surfaces[M].New York:Springer,2003.
    [10]Sethian J A.Level Set Methods and Fast Marching Methods[J].Evolving Interfaces in Computational Geometry Fluid Mechanics Computer Vision&Material Sciences,1999,11(1).
    [11]Rider W J,Kothe D B.A Marker Particle Method for Interface Tracking[C].Lake Tahoe:6th International Symposium on Computational Fluid Dynamics,1995.
    [12]Tryggvason G,Bunner B,Esmaeeli A,et al.A FrontTracking Method for the Computations of Multiphase Flow[J].Journal of Computational Physics,2001,169(2):708-759.
    [13]Juric D,Tryggvason G.A Front-Tracking Method for Dendritic Solidification[J].Journal of Computational Physics,1996,123(1):127-148.
    [14]Enright D,Fedkiw R,Ferziger J,et al.A Hybrid Particle Level Set Method for Improved Interface Capturing[J].Journal of Computational Physics,2002,183(1):83-116.
    [15]Enright D,Losasso F,Fedkiw R.A Fast and Accurate Semi-Lagrangian Particle Level Set Method[J].Computers&Structures,2005,83(6-7):479-490.
    [16]Xiangmin Jiao.Face Offsetting:A Unified Approach for Explicit Moving Interfaces[J].Journal of Computational Physics,2007,220(2):612-25.
    [17]Jiao X.Data Transfer and Interface Propagation in Multicomponent Simulations[D].USA:University of Illinois at Urbana-Champaign,2001.
    [18]张德雄,王照斌.动能拦截器的固体推进剂轨控和姿控系统[J].飞航导弹,2001,(2):37-41.
    [19]Baker B B,Copson E T.The Mathematical Theory of Huygens'Principle[M].Oxford:Clarendon Press,1950.
    [20]Freitag L,Leurent T,Knupp P,et al.MESQUITE Design:Issues in the Development of a Mesh Quality Improvement Toolkit[C].USA:Proceedings of the Eighth International Conference on Grid Generation Methods for Numerical Field Simulation,2002.
    [21]Lawlor O S.A Voxel-Based Parallel Collision Detection Algorithm[C].New York:ICS Proceedings of International Conference on Supercomputing,2002.
    [22]Whitfield D L,Janus J M.Three-Dimensional Unsteady Euler Equations Solution Using Flux Vector Splitting[R].AIAA 84-1552.
    [23]Brandyberry M.Uncertainty Quantification in 3D Rocket Simulation[R].AIAA 2006-4586.
    [24]黄俊.固体火箭发动机测试技术[M].北京:航空工业出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700