用户名: 密码: 验证码:
复杂土壤环境下110 kV电缆温度场有限元仿真及散热优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Finite Element Analysis and Heat Dissipation Optimization of 110 kV Electric Cable Buried in a Multilayered Soil
  • 作者:吕洪坤 ; 汪明军 ; 方昕 ; 韩高岩 ; 蔡洁聪
  • 英文作者:LYU Hongkun;WANG Mingjun;FANG Xin;HAN Gaoyan;CAI Jiecong;State Grid Zhejiang Electric Power Research Institute;E.Energy Technology Co., Ltd.;
  • 关键词:导热系数 ; 载流量 ; 有限元 ; 电缆
  • 英文关键词:thermal conductivity;;carrying capacity;;infinite element;;electric cable
  • 中文刊名:ZJDL
  • 英文刊名:Zhejiang Electric Power
  • 机构:国网浙江省电力有限公司电力科学研究院;杭州意能电力技术有限公司;
  • 出版日期:2019-01-23 11:46
  • 出版单位:浙江电力
  • 年:2019
  • 期:v.38;No.273
  • 基金:国网浙江省电力有限公司科技项目(5211DS17002N)
  • 语种:中文;
  • 页:ZJDL201901011
  • 页数:6
  • CN:01
  • ISSN:33-1080/TM
  • 分类号:67-72
摘要
为了提高数值解的准确性,将土壤物性随温度的变化考虑到110 kV覆土电缆的温度场仿真中,考察多种铺设方式下电缆温度变化的规律。结果表明,降低填埋深度和增大电缆间距都能有效降低电缆中心温度。同时,采用高导热回填土和布置冷却水管也能大幅度改善电缆的散热,其中,相比于在电缆正上方布置,冷却水管布置在电缆下方的散热效果更佳。
        In present study, the temperature field of 110 kV electric cable buried in multilayered solid was analyzed through infinite element method. In order to improve the accuracy of numerical result, the variation in thermal conductivity of soil as a function of temperature was investigated. Results shows both decreasing the burial depth and increasing the cable space can lower the core temperature of electric cable. In addition,thermal backfill and cooling water pipe adopted in numerical study was found feasible in heat dissipation enhancement. Specifically, the cooling water pipe arranged below electric cable revealed a better performance than that above electric cable.
引文
[1]李志坚,张东斐,曹慧玲,等.地下埋设电缆温度场和载流量的数值计算[J].高压电技术,2004,30(4):27-30.
    [2]郑肇骥,王明.高压电缆线路[M].北京:水利电力出版社,1983.
    [3]李熙谋.不同敷设条件下电缆载流量的校正和实用算法[J].电力建设,1997(5):1-7.
    [4]庄小亮,余兆荣,牛海清,等.日负载系数与10 kV XLPE电缆周期负荷载流量关系的试验研究[J].电力自动化设备,2014,34(4):168-172.
    [5]马国栋.电线电缆载流量[M].北京:中国电力出版社,2014.
    [6]ANDERS G J,CHAABAN M,BEDARD N,et al.New approach to ampacity evaluation of cables in ducts using finite element technique[J].IEEE Transactions on Power Delivery,1987,285(4):969-975.
    [7]GELA G,DAI J J.Calculation of thermal fields of underground cables using the boundary element method[J].IEEE Transactions on Power Delivery,1988,3(4):1341-1347.
    [8]GARRIDO C,OTERO A F,CIDRAS J.Theoretical model to calculate steady-state and transient ampacity and temperature in buried cables[J].Power Delivery IEEE Transactions on,2003,18(3):667-678.
    [9]曹惠玲,王增强,李雯靖,等.坐标组合法对直埋电缆与土壤界面温度场的数值计算[J].电工技术学报,2003,18(3):59-63.
    [10]于建立,常树生,牛远方,等.地下电力电缆温度场及载流量的数值计算[J].东北电力大学学报,2008,28(4):62-65.
    [11]王有元,陈仁刚,陈伟根,等.电缆沟敷设方式下电缆载流量计算及其影响因素分析[J].电力自动化设备,2010,30(11):24-29.
    [12]梁永春,李彦明,柴进爱,等.地下电缆群稳态温度场和载流量计算新方法[J].电工技术学报,2007,22(8):185-190.
    [13]OC O P,CISEK P,PILARCZYK M,et al.Numerical simulation of heat dissipation processes in underground power cable system situated in thermal backfill and buried in a multilayered soil[J].Energy Conversion and Management,2015(95):352-370.
    [14]黄宏伟.电力工程电缆设计规范[M].北京:中国计划出版社,2014.
    [15]RADHAKRISHNA H S.Fluidized cable thermal backfill 1[J].Underground Cable Thermal Backfill,1982:34-53.
    [16]OC O P,TALER D,CISEK P,et al.FEM-based thermal analysis of underground power cables located in backfills made of different materials[J].Strength of Materials,2015,47(5):770-780.
    [17]李红雷,俞瑾华,蒋晓娟,等.城市管廊中电缆线路运行热环境研究[J].电网与清洁能源,2017,33(7):85-89.
    [18]余欣,张涛,彭向阳,等.110 kV受损电缆绝缘理化性能测试与热历史分析[J].广东电力,2017,30(12):119-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700