用户名: 密码: 验证码:
基于workbench的混流泵反向发电疲劳寿命分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fatigue Strength Checking of Francis Pump Reverse Power Generation Based on Workbench
  • 作者:李照
  • 英文作者:LI Zhao;Yunnan Hengcheng Construction Supervision Consulting Co. Ltd.;
  • 关键词:水泵 ; 双向流固耦合 ; 疲劳强度 ; 疲劳寿命
  • 英文关键词:water pump;;two-way fluid solid coupling;;fatigue strength;;fatigue life
  • 中文刊名:ZNSD
  • 英文刊名:China Rural Water and Hydropower
  • 机构:云南恒诚建设监管咨询有限公司;
  • 出版日期:2019-04-15
  • 出版单位:中国农村水利水电
  • 年:2019
  • 期:No.438
  • 语种:中文;
  • 页:ZNSD201904040
  • 页数:4
  • CN:04
  • ISSN:42-1419/TV
  • 分类号:173-176
摘要
部分泵站可进行反向发电工况运行,可以为泵站创造一定的经济效益。此时水泵转轮处于非设计工况,运用双向流固耦合对此时转轮的应力及变形规律进行研究,得出转轮最大应力发生在叶片进水侧叶片与转轮连接处,约为5.8 MPa,并从轮毂向轮缘处逐渐递减;最大形变发生在转轮叶片的进水口边缘处,约为0.013 mm,从轮缘向轮毂中心递减。根据转轮的应力分布情况进行理论计算,最小安全系数为9.24。利用workbench平台中的专业疲劳分析模块,利用疲劳分析工具Fatigue tools估算转轮的疲劳寿命,得出转轮根部为疲劳安全系数最小的部位为9.088 2,与转轮最大应力分布位置相同。两者的安全系数值均在转轮的疲劳寿命在材料安全范围内,在反向发电运行时满足安全稳定的要求。
        Some pumping stations can operate in the reverse power generation mode, which can create certain economic benefits for pumping stations. At this point, the pump runner is in an off-design condition, and the stress and deformation of the runner are studied by using the two-way fluid-solid coupling method. The results show that the maximum stress of the runner occurs at the junction of the inlet blade and the runner, about 5.8 MPa, and gradually decreases from the hub to the flange; the maximum deformation occurs at the inlet edge of the runner blade. The edge is about 0.013 mm, descending from the flange to the hub. According to the stress distribution of the runner, the theoretical calculation value of fatigue life is 9.24. Based on the professional fatigue analysis module of workbench platform, the fatigue life of the runner is estimated by fatigue tools. It is concluded that the minimum fatigue safety factor is 9.088 2 at the root of the runner and the maximum stress distribution of the runner. Set the same. Both safety factors are within the material safety range of the fatigue life of the runner, and meet the requirements of safety and stability in the reverse power generation operation.
引文
[1] 郑小波,王玲军,翁凯.基于双向流固耦合的贯流式水轮机动力特性分析[J].农业工程学报,2016,32(4):78-83.
    [2] 谈明高,吴贤芳,刘厚林,等.双蜗壳离心泵的流固耦合分析[J].中国农村水利水电,2012,(12):127-130.
    [3] 吴忠,何勇,邵勇,等.双向轴流泵流固耦合动力特性分析[J].中国农村水利水电,2017,(5):188-192.
    [4] 赵玺,赖喜德,苟秋琴.混流式水轮发电机组上机架疲劳寿命分析[J].水电能源科学, 2015,(8):140-143.
    [5] 肖若富,王正伟,罗永要.基于流固耦合的混流式水轮机转轮静应力特性分析[J].水力发电学报,2007,26(3):120-123.
    [6] 张德胜,张磊,施卫东,等.基于流固耦合的离心泵蜗壳振动特性优化[J].农业机械学报,2013,44(9):40-45.
    [7] 陈佳,裴吉,袁寿其,等.基于泵轴流固耦合的双向流道轴流泵装置的数值分析[J].中国农村水利水电,2016,(11):169-174.
    [8] 钟林涛.基于流固耦合的核主泵叶轮结构力学分析[J].西部皮革,2018,(5):136.
    [9] 孟凡,李彦军,邵勇,等.流固耦合作用对双向流道泵装置流场影响[J].中国农村水利水电,2017,(1):175-179.
    [10] 董兴华,郭艳磊,毕祯,等.基于CFX与Workbench耦合的轴流泵的内外特性[J].排灌机械工程学报,2015,(6):488-493.
    [11] 赵少汴,蓝伙金.抗疲劳设计——方法与数据[M].北京:机械工业出版社,1997.
    [12] 周思柱,祝克强,吴汉川,等.基于Workbench的混砂车搅拌叶轮疲劳寿命分析[J].石油机械,2012,(2):36-38.
    [13] 赵玺,朱李,赖喜德,等.基于Workbench的水轮机轴疲劳寿命分析[J].中国农村水利水电,2015,(9):169-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700