用户名: 密码: 验证码:
不同氮效率水稻品种叶片光合作用及氮利用特征的差异分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Differences in Leaf Photosynthesis and Assimilation of Nitrogen Between Two Rice Cultivars Differing in Nitrogen Use Efficiency
  • 作者:尹晓明 ; 李辰
  • 英文作者:Yin Xiaoming;Li Chen;College of Resources and Environmental Sciences, Nanjing Agricultural University;
  • 关键词:水稻品种 ; 叶片 ; 光合作用 ; 氮素利用效率
  • 英文关键词:Rice cultivars;;Leaves;;Photosynthesis;;Nitrogen use efficiency
  • 中文刊名:ZWZZ
  • 英文刊名:Crops
  • 机构:南京农业大学资源与环境科学学院;
  • 出版日期:2019-02-01 16:50
  • 出版单位:作物杂志
  • 年:2019
  • 期:No.188
  • 基金:江苏高校品牌专业建设工程资助项目(PPZY2015A061);; 中央高校基本科研业务费科技平台实验技术项目
  • 语种:中文;
  • 页:ZWZZ201901016
  • 页数:7
  • CN:01
  • ISSN:11-1808/S
  • 分类号:96-102
摘要
以扬稻6(氮高效品种)、武玉粳3(氮低效品种)为材料,在含有2.86mmol/L NH_4~+溶液培养条件下,分别在开花期和灌浆期分析了中位叶、旗叶的净光合速率、氮同化酶的活性、叶片氮含量与转移率以及对子粒的贡献。结果表明:(1)旗叶的净光合速率显著高于中位叶;扬稻6旗叶的净光合速率显著高于武玉粳3,而中位叶净光合速率在品种间差异不显著。(2)硝酸还原酶活性(NRA)、谷氨酰胺合成酶活性(GSA)是中位叶高于旗叶、灌浆期高于开花期、扬稻6高于武玉粳3。从开花到灌浆期,旗叶可溶性糖含量呈增加的趋势,而中位叶可溶性糖含量呈减少的趋势。旗叶可溶性糖含量高于中位叶、扬稻6高于武玉粳3。可溶性蛋白含量呈下降的趋势,扬稻6可溶性蛋白含量高于武玉粳3。扬稻6、武玉粳3中位叶可溶性蛋白的转出率分别是50.3%、37.6%;旗叶可溶性蛋白的转出率分别是69.5%、44.4%。(3)中位叶总氮积累量显著高于旗叶、开花期显著高于灌浆期。扬稻6中位叶、旗叶氮转移量分别为35.6%、34.7%;武玉粳3中位叶、旗叶氮转移量分别为26.9%、35.3%。(4)去除中位叶,子粒氮分别比对照减少了6.9%(扬稻6)、4.6%(武玉粳3);子粒产量分别比对照减少了7.3%(扬稻6)、4.9%(武玉粳3)。去除旗叶,子粒氮分别比对照减少了10.5%(扬稻6)和9.2%(武玉粳3);子粒产量分别比对照减少了13.8%(扬稻6)、11.1%(武玉粳3),表明旗叶对子粒氮和产量的贡献更大。总之,氮高效品种旗叶光合作用和氮同化能力显著高于氮低效品种,另一方面,其中位叶储存的氮也能及时转移到子粒中,提高了氮效率,这反映了不同氮效率品种氮素利用差异的机制。
        Two rice cultivars,Yangdao 6(a cultivar with high N use efficiency) and Wuyujing 3(a cultivar with lowN use efficiency) were hydroponically grown in nutrient solutions containing 2.86 mmol/L NH_4~+. Several physiologicalindexes in mid-position and flag leaves, such as net photosynthetic rate, the activities of glutamine synthetase(GS)and nitrate reductase(NR), content of soluble sugar and protein, content and transition of N and its contribution tograin N accumulation and yields were conducted. The results were as follows:(1) Net photosynthetic rate of flagleaves were always higher than that of mid-position leaves at the stage of anthesis or grain filling. As for cultivars,net photosynthetic rate of flag leaves in Yangdao 6 was significantly higher than that in Wuyujing 3(P<0.05), while itshowed no significant differences between the mid-position leaves at the stage of anthesis. Furthermore, it was higherin flag leaves than that in mid-position leaves and higher in Yangdao 6 than that in Wuyujing 3.(2) NRA and GSA werehigher in mid-position leaves than that in flag leaves and were higher at grain filling stage than at anthesis stage. Also,they were significantly higher in Yangdao 6 than that in Wuyujing 3. From flowering to grain filling stage, content ofsoluble sugar exhibited increase in flag leaves while decrease in mid-position leaves, respectively. Content of solubleprotein decreased, and it was higher in Yangdao 6 than that in Wuyujing 3. The transported soluble protein in mid-position and flag leaves in Yangdao 6, Wuyujing 3 were 50.3%, 37.6% and 69.5%, 44.4%, respectively.(3) Total Naccumulation in mid-position leaves was higher than that in flag leaves and was higher at anthesis stage than at grainfilling stage. As for cultivars, the amount of total N accumulation and transition in mid-position and flag leaves inYangdao 6, Wuyujing 3 were 35.6% and 34.7%, 26.9% and 35.3%, respectively.(4) Grain N content and grain yieldswere significantly reduced under treatments of cutting leaves. Grain N content was decreased by 6.9% in Yangdao 6 and4.6% in Wuyujing 3 when removed mid-position leaves and decreased by 10.5% in Yangdao 6 and 9.2% in Wuyujing 3 when removed flag leaves. Grain yields were decreased by 7.3% in Yangdao 6 and 4.9% in Wuyujing 3 when removedmid-position leaves and decreased by 13.8% in Yangdao 6 and 11.1% in Wuyujing 3 when removed flag leaves. Thissuggested that flag leaves contributed largely to the accumulation of grain N and the production of yields. In general,net photosynthesis rate and N assimilation were significantly higher in cultivars with high N use efficiency than thosein cultivars with low N use efficiency. On the other hand, N stored in mid-position leaves in cultivars with high N useefficiency can be transferred to the kernel to reutilize, thereby, N use efficiency was improved. This indicated therewere different mechanisms in the N use efficiency between various rice cultivars.
引文
[1]陈颖,周振翔,周天阳.水稻氮高效吸收利用机制及栽培调控措施.作物杂志,2016(6):26-32.
    [2]Xue Y G,Duan H,Liu L J,et a1. An improved crop managementincreases grain yield and nitrogen and water use efficiency in rice.Crop Science,2013,53(1):271-284.
    [3]Zhang W F,Dan Z X,He P,et a1. New technologies reducegreenhouse gas emissions from nitrogenous fertilizer in China.Proceedings of the National Academy of Sciences of the United Statesof America,2013,110(211):8375-8380.
    [4]江立庚,戴廷波,韦善清,等.南方水稻氮素吸收与利用效率的基因型差异及评价.植物生态学报,2003,27(4):466-471.
    [5]张荣萍,陶诗顺.不同基因型水稻产量和氮效率对减量施肥反应的差异性研究.湖南师范大学自然科学学报,2016,39(5):27-37.
    [6]Tabuchi M,Abiko T,Yamaya T. Assimilation of ammonium ionsand reutilization of nitrogen in rice(Oryza sativa L.). Journal ofExperimental Botany,2007,58(9):2319-2327.
    [7]Singh U,Ladha J K,Castillo E G,et al. Genotypic variation in nitrogenuse efficiency in medium-and long-duration rice. Field CropsResearch,1998,58:35-53.
    [8]Mae T,Ohira K. The remobilization of nitrogen related to leaf growthand senescence in rice plants(Oryza sativa L.). Plant Cell Physiology,1981,22:1067-1074.
    [9]魏爱丽,王志敏.小麦不同光合器官对穗粒重的作用及基因型差异研究.麦类作物学报,2001,21(2):57-61.
    [10]陈冬梅,马永安,苏玉环,等.不同落黄型小麦品种光合器官衰老及产量对花后高温的响应.麦类作物学报,2017,37(12):1596-1603.
    [11]孙书娈,陈秀敏,乔文臣,等.矮秆、早熟、大穗大粒冬小麦品种衡观35籽粒干物质积累初步研究.华北农学报,2010,25(S):157-161.
    [12]董明辉,赵步洪,陈培峰.机插方式对杂交粳稻碳氮调节与颖花形成及产量的影响.农业工程学报,2017,33(13):65-73.
    [13]Li Y L,Fan X R,Shen Q R.The relationship between rhizospherenitrification and nitrogen-use efficiency in rice plants. Plant Celland Environment,2008,31:73-85.
    [14]李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000:125-127.
    [15]郭增江,于振文,石玉,等.不同土层测墒补灌对小麦旗叶光合特性和干物质积累与分配的影响.作物学报,2014,40(4):731-738.
    [16]周苏玫,张珂珂,张嫚,等.减氮适墒提高冬小麦旗叶光合潜力和籽粒产量.作物学报,2016,42(11):1677-1688.
    [17]王碧茜,范晓荣,徐国华,等.不同氮效率水稻品种旗叶的衰老特征.南京农业大学学报,2010,33(2):8-12.
    [18]Zhang Y L,LüH J,Wang D S,et al. Partial nitrate nutrition amendsphotosynthetic characteristics in rice(Oryza sativa L. var. japonica)differing in nitrogen-use efficiency. Plant Growth Regulation,2011,63:235-242.
    [19]江文文,尹燕枰,卢昆丽,等.花后高温胁迫下氮肥追施后移对小麦产量及旗叶生理特性的影响.作物学报,2014,40(5):942-949.
    [20]宁书菊,陈晓飞,张国英,等.水稻生育后期剑叶氮代谢相关酶活性及动力学变化.中国生态农业学报,2012,20(12):1606-1613.
    [21]路文静,张树华,郭程瑾,等.不同氮素利用效率小麦品种的氮效率相关生理参数研究.植物营养与肥料学报,2009(5):985-991.
    [22]Fan X R,Shen Q R,Ma Z Q,et al. A comparison of nitrate transportin four different rice(Oryza sativa L.)cultivars. Science in ChinaSer. C Life Sciences,2005,48:897-911.
    [23]Duan Y H,Zhang Y L,Ye L T,et al. Responses of rice cultivars withdifferent nitrogen use efficiency to partial nitrate nutrition. Annals ofBotany,2007,99(6):1153-1160.
    [24]Fan X R,Shen Q R,Li Y L,et al. Comparing nitrate storage andremobilization in two rice cultivars that differ in their nitrogen useefficiency. Journal of Experimental Botany,2007,58:1729-1740.
    [25]王绍华,吉志军,刘胜环,等.水稻氮素供需差与不同叶位叶片氮转运和衰老的关系.中国农业科学,2003,36(11):1261-1265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700