用户名: 密码: 验证码:
大黄提取物/聚丁二酸丁二醇酯复合材料的分子动力学模拟及抗菌性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Molecular Dynamics Simulation and Performance Influence of Rheum palmatum L. Extracts/ Poly (butylene succinate) Composites
  • 作者:宋洁 ; 柯如媛 ; 张敏 ; 费贵强 ; 马晓燕
  • 英文作者:Jie Song;Ruyuan Ke;Min Zhang;Guiqiang Fei;Xiaoyan Ma;Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science & Technology;School of Sciences, Northwestern Polytechnical University;
  • 关键词:大黄提取物 ; 聚丁二酸丁二醇酯 ; 复合材料 ; 分子动力学模拟 ; 界面相互作用
  • 英文关键词:Rheum palmatum L. extracts;;poly(butylene succinate);;composites;;molecular dynamics simulation;;interface interaction
  • 中文刊名:GFZC
  • 英文刊名:Polymer Materials Science & Engineering
  • 机构:陕西科技大学化学与化工学院陕西省轻化工助剂重点实验室;西北工业大学理学院;
  • 出版日期:2019-04-15
  • 出版单位:高分子材料科学与工程
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金资助项目(51803114);; 陕西省教育厅重点实验室科研计划(17JS014);; 西安市科技计划(2017068CG/RC031(SXKD004));; 陕西省重点研发计划(2018ZDXM-NY-059);; 陕西省创新能力支撑计划(2018TD-015)
  • 语种:中文;
  • 页:GFZC201904017
  • 页数:8
  • CN:04
  • ISSN:51-1293/O6
  • 分类号:106-112+119
摘要
从大黄(Rheum palmatum L.)中提取染色抗菌有效成分,并与聚丁二酸丁二醇酯(PBS)复合,制备双功能性大黄提取物/聚丁二酸丁二醇酯(RPLE/PBS)复合材料。采用Materials Studio(MS)软件对复合材料的界面作用进行了分子动力学模拟,研究了RPLE与PBS界面作用对复合材料性能的影响。复合材料红外光谱显示大黄提取物与PBS产生了分子间相互作用。MS模拟说明大黄提取物中的-OH与PBS酯基作用形成了静电能、氢键2种非键合作用,从而使得复合材料的界面结合作用增强。复合材料的热性能较PBS显著提高,力学性能呈现先增大后减小的趋势,降解速率同样高于PBS,均说明了分子间非键合作用对性能的影响。随着大黄提取物添加量的增加,未与PBS发生相互作用的提取物使得复合材料的有效抗菌单元增加,抗菌作用更强。
        Extracted the dying and antibacterial active components from Rheum palmatum L. and combined with poly(butylene succinate)(PBS), a double functional Rheum palmatum L. extracts/poly(butylene succinate)(RPLE/PBS) composites were prepared. The interfacial interaction molecular dynamics simulation of the composites was carried out by the Materials Studio(MS) software. Effects of the interfacial interaction between RPLE and PBS on properties of the composites were investigated. The infrared spectra of the composites show that the RPLE produced intermolecular interaction with PBS. The MS simulation illustrates that two non-bonding interactions about the electrostatic energy and the hydrogen bond formed by-OH in RPLE with ester groups in PBS, which enhances the interfacial bonding energy of the composites. The thermal properties of the composites are significantly improved, the mechanical properties increase firstly and then decrease, and the degradation rate is also higher than that of PBS. All of these explain the effect of intermolecular non-bond cooperation on the properties. With the content of RPLE extracts increasing, the extracts that without interaction with PBS increase the effective antibacterial area and improve the antibacterial effect of the composites.
引文
[1] Carolina M J,Oswaldo O Y,Celina B,et al.Active and smart biodegradable packaging based on starch and natural extracts [J].Carbohydr.Polym.,2017,176:187-194.
    [2] Denis M P,Adriana N F,Ioana C.Nanostructured biocomposites from aliphatic polyesters and bacterial cellulose [J].Ind.Crop.Prod.,2016,93:251-266.
    [3] Zhang X C,Shi J F,Ye H M,et al.Combined effect of cellulose nanocrystals and poly(butylene succinate) on poly(lactic acid) crystallization:The role of interfacial affinity[J].Carbohydr.Polym.,2018,179:79-85.
    [4] Dai X,Qiu Z B.Crystallization kinetics,morphology,and hydrolytic degradation of novel biobased poly (butylene succinate-co-decamethylene succinate) copolyesters [J].Polym.Degrad.Stab.,2017,137:197-204.
    [5] Zhou X M,Xie W J.Synthesis and characterization of poly(ester ether urethane)s block copolymers based on biodegradable poly(butylene succinate) and poly(ethylene glycol) [J].Polym.Degrad.Stab.,2017,140:147-155.
    [6] George Z P,Dimitrios G P.Solid-state structure and thermal characteristics of a sustainable biobased copolymer:poly(butylene succinate-co-furanoate) [J].Thermochim.Acta,2017,86:172-162.
    [7] Kathirvel T,Subramanian P,Janardhanam S,et al.Degradation of poly(butylene succinate) and poly(butylene succinate-co-butylene adipate) by a lipase from yeast Cryptococcus sp.grown on agro-industrial residues [J].Int.Biodeter.Biodegr.,2016,110:99-107.
    [8] Boo H O,Hwang S J,Bae C S,et al.Extraction and characterization of some natural plant pigments [J].Ind.Crop.Prod.,2012,40:129-135.
    [9] Sérgio R K V,Luis F W B,Carlos O P,et al.Development of structured natural dyes for use into plastics [J].Dyes.Pigments.,2017,136:248-254.
    [10] Liu Y,Li L,Xiao Y Q,et al.Global metabolite profiling and diagnostic ion filtering strategy by LC–QTOF MS for rapid identification of raw and processed pieces of Rheum palmatum L.[J].Food.Chem.,2016,192:531-540.
    [11] Wang Z B,Hu J X,Du H X,et al.Microwave-assisted ionic liquid homogeneous liquid–liquid microextraction coupled with high performance liquid chromatography for the determination of anthraquinones in Rheum palmatum L.[J].J.Pharmaceut.Biomed.,2016,125:178-185.
    [12] Wang L,Li D,Bao C L,et al.Ultrasonic extraction and separation of anthraquinones from Rheum palmatum L.[J].Ultrason.Sonochem.,2008,15:738-746.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700