用户名: 密码: 验证码:
挖掘机器人轨迹控制及运动可视化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Robotic excavator trajectory control and motion visualization
  • 作者:冯浩 ; 殷晨波 ; 贾文华 ; 翁文文 ; 马伟
  • 英文作者:FENG Hao;YIN Chenbo;JIA Wenhua;WENG Wenwen;MA Wei;Institute of Automobile and Construction Machinery,Nanjing Tech University;School of Mechanical Engineering,Nanjing Institute of Technology;
  • 关键词:挖掘机器人 ; 轨迹控制 ; 虚拟仪器 ; 可视化 ; 运动学
  • 英文关键词:robotic excavator;;trajectory control;;virtual instrument;;visualization;;kinematics
  • 中文刊名:JSJJ
  • 英文刊名:Computer Integrated Manufacturing Systems
  • 机构:南京工业大学车辆与工程机械研究所;南京工程学院机械工程学院;
  • 出版日期:2018-09-10 11:24
  • 出版单位:计算机集成制造系统
  • 年:2019
  • 期:v.25;No.250
  • 基金:国家自然科学基金资助项目(51575255,51505211);; 江苏省研究生科研与实践创新计划资助项目(KYCX18_1094)~~
  • 语种:中文;
  • 页:JSJJ201902019
  • 页数:7
  • CN:02
  • ISSN:11-5946/TP
  • 分类号:185-191
摘要
为了实现挖掘机器人的人机交互控制并确保作业安全,设计了基于虚拟仪器的挖掘机器人轨迹控制及运动可视化系统。该系统利用传感器采集挖掘机器人的运行状态信息,包括液压缸位移、车身回转角度、工作压力等。首先建立挖掘机器人的运动学模型,其次分析系统的基本工作原理,在此基础上建立了包含三维姿态可视化、轨迹控制、运行信息监测和远程网络在内的完整系统。最后,将其应用于挖掘机器人常见的整平作业和斜坡作业中,结果表明系统能够实时可靠地显示挖掘机器人的三维姿态,整平作业和斜坡作业的最大误差分别为44.56mm和41.21mm,均在合理范围内,验证了系统的实用性和有效性。
        To realize human-computer interaction control and ensure safety,an trajectory control and motion visualization system of robotic excavator was designed.The control system was mainly composed of three dimensional gesture visualization:trajectory control,operation information monitoring and remote network.The mathematical models of kinematic were analyzed,and the mechanism modeling method was analyzed.On this basis,the displacements of hydraulic cylinders and body turning angle were collected in real time,then the kinematics transformation was carried out,and the real-time gesture could be simulated.The experiments were carried out on a 23 trobotic excavator,and different trajectories were used to validate the performances of the system.It was demonstrated from the experimental work that the system was stable and reliable,and the maximum errors of trajectories were 44.56 mm and 41.21 mm respectively.These errors were within the reasonable range.The system could provide a visualization platform for remote monitoring,control algorithm research and experimental data analysis.
引文
[1]WANG Dongyun,ZHENG Lijuan,YU Hongxiang,et al.Robotic excavator motion control using a nonlinear proportional-integral controller and cross-coupled pre-compensation[J].Automation in Construction,2016,64(4):1-6.
    [2]FENG Hao,YIN Chenbo,WENG Wenwen,et al.Robotic excavator trajectory control using an improved GA based PIDcontroller[J].Mechanical Systems&Signal Processing,2018,105(3):153-168.
    [3]CHEN Jin,QING Fei,PANG Xiaoping.Mechanism optimal design of backhoe hydraulic excavator working device based on digging paths[J].Journal of Mechanical Science&Technology,2014,28(1):213-222.
    [4]DING Ruqi,XU Bing,ZHANG Junhui,et al.Self-tuning pressure-feedback control by pole placement for vibration reduction of excavator with independent metering fluid power system[J].Mechanical Systems&Signal Processing,2017,92(4):86-106.
    [5]FELIX N,HARDING J A,GLASS J,Improving hydraulic excavator performance through in line hydraulic oil contamination monitoring[J].Mechanical Systems&Signal Processing,2016,83(1):176-193.
    [6]JOONOH S,SANGUK H,SANGHYUN L,et al.Computer vision techniques for construction safety and health monitoring[J].Advanced Engineering Informatics,2015,29(2):239-251.
    [7]NI Tao,ZHANG Hongyan,YU Changzhi,et al.Design of highly realistic virtual environment for excavator simulator[J].Computers&Electrical Engineering,2013,39(7):2112-2123.
    [8]KYEONG W O,DONGNAM K,NAM H K,et al.The virtual environment for force-feedback experiment of excavator using a novel designed haptic device[C]//Proceedings of the28th International Symposium on Automation and Robotics in Construction.Seoul,Korea:ISARC,2011:51-56.
    [9]TRUNG N T,TRUONG D Q,AHN K K.A generation step for force reflecting control of a pneumatic excavator based on augmented reality environment[C]//Proceedings of the 28th International Symposium on Automation and Robotics in Construction.Seoul,Korea:ISARC,2011:637-642.
    [10]LE Q H,JEONG Y M,NGUYEN C T,et al.Development of a virtual excavator using SimMechanics and SimHydraulic[J].Korea Society of Fluid Power&Construction Equipments,2013,10(1):29-36.
    [11]BEHZADAN A H,DONG S,KAMAT V R.Augmented reality visualization:a review of civil infrastructure system applications[J].Advanced Engineering Informatics,2015,29(2):252-267.
    [12]TALMAKI S,KAMAT V R,CAI H.Geometric modeling of geospatial data for visualization-assisted excavation[J].Advanced Engineering Informatics,2013,27(2):283-298.
    [13]ZHANG Libin,SU Jian,CHEN Rong,et al.Predicted maintenance technology based on virtual instrument&distributed model[J].Computer Integrated Manufacturing Systems,2006,12(7):1085-1089(in Chinese).[张立斌,苏建,陈熔,等.基于虚拟仪器及分布模型的预维修技术研究[J].计算机集成制造系统,2006,12(7):1085-1089.]
    [14]ZHANG Xinzhou,SUN Yu,PENG Binbin,et al.Development and application of reliability test platform for high-speed punch[J].Computer Integrated Manufacturing Systems,2013,19(5):1064-1070(in Chinese).[张新洲,孙宇,彭斌彬,等.高速冲压机床可靠性试验平台开发及应用[J].计算机集成制造系统,2013,19(5):1064-1070.]
    [15]MINCA E,FILIPESCU A,VODA A.Modelling and control of an assembly/disassembly mechatronics line served by mobile robot with manipulator[J].Control Engineering Practice,2014,31(31):50-62.
    [16]LI Bin.Container terminal task scheduling with the fundamental principles of PID control and simulation based optimization[J].Computer Integrated Manufacturing Systems,2016,22(3),833-845(in Chinese).[李斌.面向PID控制和仿真优化的集装箱码头作业调度[J].计算机集成制造系统,2016,22(3),833-845.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700