用户名: 密码: 验证码:
川西北草地沙化对土壤可溶性有机氮及酶活性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Soil dissolved organic nitrogen and enzyme activities at different desertification grasslands in Northwest Sichuan
  • 作者:舒向阳 ; 胡玉福 ; 杨雨山 ; 何佳 ; 佘淑凤 ; 贾安都 ; 姜正博 ; 孙锦杨
  • 英文作者:SHU Xiang-yang;HU Yu-fu;YANG Yu-shan;HE Jia;SHE Shu-feng;JIA An-du;JIANG Zheng-bo;SUN Jin-yang;College of Resources,Sichuan Agricultural University;College of Management,Sichuan Agricultural University;
  • 关键词:川西北草地 ; 沙化 ; 可溶性有机氮 ; 土壤酶
  • 英文关键词:grasslands in northwest Sichuan;;desertification;;dissolved organic nitrogen;;soil enzyme
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:四川农业大学资源学院;四川农业大学管理学院;
  • 出版日期:2018-01-10
  • 出版单位:干旱地区农业研究
  • 年:2018
  • 期:v.36;No.166
  • 基金:国家支撑计划项目(2015BAC05B00);; 四川省科技支撑计划项目(2014SZ0057);; 川西北高寒草地沙化防治新模式的研究与示范(2014SZ0159)
  • 语种:中文;
  • 页:GHDQ201801011
  • 页数:6
  • CN:01
  • ISSN:61-1088/S
  • 分类号:72-77
摘要
为探究草地沙化对川西北高寒草地土壤可溶性有机氮及酶活性的影响,采用样地调查方法,研究了不同沙化程度草地可溶性有机氮、脲酶、蛋白酶、硝酸还原酶及精氨酸脱氨酶的变化特征。结果表明:随草地沙化程度加剧,土壤脲酶、蛋白酶、硝酸还原酶及精氨酸脱氨酶活性显著降低。与未沙化草地相比,重度沙化草地0~20cm土层脲酶、蛋白酶、硝酸还原酶及精氨酸脱氨酶活性分别降低了40.54%、30.68%、39.85%和44.00%;土壤可溶性有机氮随沙化程度增加呈下降趋势,相较于未沙化,轻度沙化、中度沙化和重度沙化草地土壤可溶性有机氮含量分别下降了22.36%、48.72%和67.77%,且0~20 cm土层变化最为显著。相关分析结果表明,酶活性与土壤氮素呈极显著正相关;硝酸还原酶与铵态氮、硝态氮、微生物量氮和可溶性有机氮的相关系数最高,分别达到0.868、0.850、0.789和0.701。
        In order to explore the changes of soil dissolved organic nitrogen and enzyme activities in the process of the alpine desertification grassland in Northwest Sichuan,we studied the dissolved organic nitrogen and the vertical distribution characteristics of urease,protease,nitrate reductase and arginine deaminase. The results showed that with the aggravation of desertification,all enzyme activities decreased sharply. Compared with the nondesertification grassland,the activities of urease,protease,nitrate reductase and arginine deaminase of the grassland were decreased by 40.54%,30.68%、39.85% and 44.00% at 0 ~ 20 cm soil depth,respectively. With the increase of the degree of desertification,soil dissolved organic nitrogen showed a declining trend. Compared with the non-desertification grassland,the soil dissolved organic nitrogen concentrations of light desertification grassland,middle desertification grassland,serious desertification grassland were decreased by 22.36%,48.72% and 67.77%respectively,especially at the 0 ~ 20 cm soil layer. Correlation analysis showed a significant positive correlation between soil enzyme activity and soil nitrogen.
引文
[1]Mueller K E,Hobbie S E,Tilman D,et al.Effects of plant diversity,N fertilization,and elevated carbon dioxide on grassland soil N cycling in a long-term experiment[J].Global Change Biology,2013,19(4):1249-1261.
    [2]Ceulemans T,Merckx R,Hens M,et al.Plant species loss from European semi-natural grasslands following nutrient enrichment-is it nitrogen or is it phosphorus?[J].Global Ecology and Biogeography,2013,22(1):73-82.
    [3]Hasselquist N J,Metcalfe D B,Marshall J D,et al.Seasonality and nitrogen supply modify carbon partitioning in understory vegetation of a boreal coniferous forest[J].Ecology,2016,97(3):671-683.
    [4]Jiang L,Wang S P,Luo C Y,et al.Effects of warming and grazing on dissolved organic nitrogen in a Tibetan alpine meadow ecosystem[J].Soil and Tillage Research,2016,158:156-164.
    [5]林丽,李以康,崔莹,等.青藏高原典型植被土壤溶解性氮与植物量相关性分析[J].山地学报,2012,30(6):721-727.
    [6]Burns R G,De Forest J L,Marxsen J,et al.Soil enzymes in a changing environment:current knowledge and future directions[J].Soil Biology and Biochemistry,2013,58(3):216-234.
    [7]Garcla-Gil J C,Plaza C,Soler-Rovira P,et al.Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass[J].Soil Biology and Biochemistry,2000,32(13):1907-1913.
    [8]Tang Z S,An H,Shangguan Z P.The impact of desertification on carbon and nitrogen storage in the desert steppe ecosystem[J].Ecological Engineering,2015,84(11):92-99.
    [9]Allington G R H,Valone T J.Reversal of desertification:the role of physical and chemical soil properties[J].Journal of Arid Environments,2010,74(8):973-977.
    [10]Zhao H L,He Y H,Zhou R L,et al.Effects of desertification on soil organic C and N content in sandy farmland and grassland of Inner Mongolia[J].Catena,2009,77(3):187-191.
    [11]Xiang S,Guo R Q,Wu N,et al.Current status and future prospects of Zoige Marsh in eastern Qinghai-Tibet Plateau[J].Ecological Engineering,2009,35(4):553-562.
    [12]Li J C,Wang W L,Hu G Y,et al.Changes in ecosystem service values in Zoige Plateau,China[J].Agriculture,Ecosystems&Environment,2010,139(4):766-770.
    [13]石承苍,凃军.近40年四川省若尔盖高原土地荒漠化遥感监测研究[J].西南农业学报,2009,22(6):1662-1664.
    [14]Tabatabai M A.Soil Enzymes.Methods of Soil Analysis:Part 2-microbiological and Biochemical Properties[M].Madison,WL,USA:Soil Science Society of America,1982:775-833.
    [15]Ladd J N,Butler J H A.Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates[J].Soil Biology and Biochemistry,1972,4(1):19-30.
    [16]Kandeler E.Methods in Soil Biology[C]//Schinner F,Ohlinger R,Kandeler E,et al.Book Methods in Soil Biology.New York:Springer-Verlag,Heidelberg,1996:168-170.
    [17]Li F R,Zhao W Z,Liu J L,et al.Degraded vegetation and wind erosion influence soil carbon,nitrogen and phosphorus accumulation in sandy grasslands[J].Plant and Soil,2009,317(1-2):79-92.
    [18]Martinez-Mena M,Rogel J A,Castillo V,et al.Organic carbon and nitrogen losses influenced by vegetation removal in a semiarid mediterranean soil[J].Biogeochemistry,2002,61(3):309-321.
    [19]Zuo X A,Zhao H L,Zhao X Y,et al.Vegetation pattern variation,soil degradation and their relationship along a grassland desertification gradient in Horqin Sandy Land,northern China[J].Environmental geology,2009,58(6):1227-1237.
    [20]秦嘉海,张勇,赵芸晨,等.祁连山黑河上游不同退化草地土壤理化性质及养分和酶活性的变化规律[J].冰川冻土,2014,36(2):335-346.
    [21]尤全刚,薛娴,彭飞,等.高寒草甸草地退化对土壤水热性质的影响及其环境效应[J].中国沙漠,2015,(5):1183-1192.
    [22]贺凤鹏,曾文静,王曌迪,等.温带草原退化对土壤剖面微生物学特征的影响[J].微生物学通报,2016,43(3):702-711.
    [23]舒向阳,胡玉福,蒋双龙,等.川西北沙化草地植被群落,土壤有机碳及微生物特征[J].草业学报,2016,25(4):45-54.
    [24]Alexandre A,Balesdent J,Cazevieille P,et al.Direct uptake of organic carbon by grass roots and allocation in leaves and phytoliths:13C labeling evidence[J].Biogeosciences Discussions,2015,12(23):19751-19780.
    [25]Moran-Zuloaga D,Dippold M,Glaser B,et al.Organic nitrogen uptake by plants:reevaluation by position-specific labeling of amino acids[J].Biogeochemistry,2015,125(3):359-374.
    [26]Van Kessel C,Clough T,van Groenigen J W.Dissolved organic nitrogen:an overlooked pathway of nitrogen loss from agricultural systems?[J].Journal of Environmental Quality,2009,38(2):393-401.
    [27]Oelmann Y,Wilcke W,Temperton V M,et al.Soil and plant nitrogen pools as related to plant diversity in an experimental grassland[J].Soil Science Society of America Journal,2007,71(3):720-729.
    [28]张玉霞,姚拓,王国基,等.高寒生态脆弱区不同扰动生境草地植被及土壤无机氮变化特征[J].草业学报,2014,23(4):245-252.
    [29]王文颖,李文全,周华坤,等.高寒人工草地土壤可溶性有机氮库和无机氮库动态变化[J].生态环境学报,2016(1):30-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700