用户名: 密码: 验证码:
水力喷射工具外壁反溅冲蚀数值分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Spray Erosion of Hydraulic Jet Tool
  • 作者:秦彦斌 ; 杨伯客 ; 韦亮 ; 米红学 ; 窦益华
  • 英文作者:QIN Yanbin;YANG Boke;WEI Liang;MI Hongxue;DOU Yihua;College of Mechanical Enginnering,Xi'an Shiyou University;Western Drilling and Testing Company,CNPC;
  • 关键词:水力喷射工具 ; 水力射孔 ; 液固两相流 ; 反溅冲蚀 ; 离散相模型
  • 英文关键词:hydraulic jet tool;;hydraulic perforation;;solid-liquid two-phase flow;;erosion;;discrete phase model
  • 中文刊名:XASY
  • 英文刊名:Journal of Xi'an Shiyou University(Natural Science Edition)
  • 机构:西安石油大学机械工程学院;中国石油西部钻探试油公司;
  • 出版日期:2019-05-25
  • 出版单位:西安石油大学学报(自然科学版)
  • 年:2019
  • 期:v.34;No.176
  • 基金:国家自然科学基金资助项目“页岩气水平井压裂与生产套管变形机理及其控制机制研究”(51674199)
  • 语种:中文;
  • 页:XASY201903011
  • 页数:7
  • CN:03
  • ISSN:61-1435/TE
  • 分类号:78-84
摘要
水力射孔技术利用高速含颗粒两相流的冲蚀作用对目标壁面打孔或切割作业,在射孔过程中高速两相流会反溅至工具外壁引起冲蚀破坏,严重时会使工具失效。本文利用欧拉-拉格朗日模型计算高速颗粒喷射反弹后的运动状态,得到水力射孔工具外壁的反溅冲蚀速率及区域,得到颗粒的反溅运动规律及反溅冲蚀的主要影响因素。计算结果显示随着射孔孔深的变化,颗粒反溅撞击速度和角度发生改变;随射孔深度增加反溅冲蚀速率降低,而反溅冲蚀区域增大;反溅冲蚀速率会随着喷射速度增大而增加,而反溅冲蚀区域基本不受喷射速度影响。因此,反溅冲蚀速率主要受射孔液喷射速度影响,而反溅冲蚀区域主要受射孔深度影响。
        Hydraulic perforating technology uses the erosion of high velocity solid-liquid flow to punch or cut the target wall.However,during the perforating process,the high velocity two-phase flow will be rebounded to the outer wall of the perforating tool to cause its erosion damage,and in severe cases,the tool will fail.The Euler-Lagrange model is used to calculate the motion state of the rebounded high-speed particles and the erosion rate and area on the outer wall of the hydraulic perforating tool,and determine the movement law of the particles and the main factors affecting the erosion.The results show that the impact velocity and angle of particles change with the change of perforation depth:with the increase of perforation depth,the erosion rate decreases,while the erosion area increases;the erosion rate increases with the increase of jet velocity,while the erosion area is not affected by jet velocity.Therefore,the erosion rate is mainly affected by the jet velocity of the perforating fluid,and the erosion area is mainly affected by the depth of the perforation.
引文
[1] 王社教,蔚远江,郭秋麟,等.致密油资源评价新进展[J].石油学报,2014,35(6):1095-1105.WANG Shejiao,YU Yuanjiang,GUO Qiulin,et al.New advance in resources evaluation of tight oil[J].Acta Petrolei Sinica,2014,35(6):1095-1105.
    [2] 李宪文,赵振峰,付钢旦,等.水力喷砂射孔孔道形态研究[J].石油钻采工艺,2012,34(2):55-58.LI Xianwen,ZHAO Zhenfeng,FU Gangdan,et al.Research onchannel pattern of hydraulic sand blasting perforation[J].Oil Drilling & Production Technology,2012,34(2):55-58.
    [3] 张继信,樊建春,汪彤,等.压裂液对高压弯管冲蚀作用的数值分析[J].润滑与密封,2013,38(4):27-31.ZHANG Jixin,FAN Jianchun,WANG Tong,et al.Research on erosion wear of fracturing fluid on high pressure elbow[J].Lubrication Engineering,2013,38(4):27-31.
    [4] 郭朝辉,魏辽,孙文俊,等.全通径滑套分段压裂工具耐冲蚀性能试验研究[J].石油机械,2015,43(3):100-103.GUO Zhaohui,WEI Liao,SUN Wenjun,et al.Experimental study for erosion resistance of full-bore sliding sleeve staged fracturing tool[J].China Petroleum Machinery,2015,43(3):100-103.
    [5] 刘雁蜀,秦龙,王治国,等.套管压裂过程中射孔孔眼冲蚀数值模拟[J].石油机械,2015,43(9):66-69.LIU Yanshu,QIN Long,WANG Zhiguo,et al.Numerical simulation of perforation hole erosion during cased hole fracturing[J].China Petroleum Machinery,2015,43(9):66-69.
    [6] 盛茂,李根生,黄中伟,等.水力喷射孔内射流增压规律数值模拟研究[J].钻采工艺,2011,34(2):42-45,115.SHENG Mao,LI Gensheng,HUANG Zhongwei,et al.Numerical simulation of pressure boosting effect in jet hole during hydraulic fracturing[J].Drilling & Production Technology,2011,34(2):42-45,115.
    [7] 李智,胥云,王振铎,等.水力喷砂压裂工具反溅冲蚀磨损分析[J].石油矿场机械,2010,39(11):25-28.LI Zhi,XU Yun,WANG Zhenduo,et al.Analysis on nozzle wear of hydraulic sandblast fracturing tools[J].Oil Field Equipment,2010,39(11):25-28.
    [8] GNAMBODE P S,ORLANDI P,OULD-Rouiss M,et al.Large-Eddy simulation of turbulent pipe flow of power-law fluids[J].International Journal of Heat and Fluid Flow,2015,54(24):196-210.
    [9] BLAIS B,LASSAIGNE M,GONIVA C,et al.Development of an unresolved CFD-DEM model for the flow of viscous suspensions and its application to solid-liquid mixing[J].Journal of Computational Physics,2016,318(56):201-221.
    [10] IQBAL N,RAUH C.Coupling of discrete element model(DEM) with computational fluid mechanics(CFD):a validation study[J].Applied Mathematics and Computation,2016,277(13):154-163.
    [11] WEN Cy,YU Yh.Mechanics of fluidization[J].Chem Eng Prog Symp Ser,1966,62(76):100-110.
    [12] CHEN X H,MCLAURY B S,SHIRAZI S A.Application and experimental validation of a computational fluid dynamics(CFD)-based erosion prediction model in elbows and plugged tees[J].Computers & Fluids,2004,33(10):1251-1272.
    [13] MCLAURY B.Predicting solid particle erosion resulting from turbulent fluctuations in oilfield geometries[D].Tulsa:The University of Tulsa,1996:28-37.
    [14] AHLERT K.Effects of particle impingement angle and surface wetting on solid particle erosion of AISI 1018 Steel[D].Tulsa:The University of Tulsa,1994:52-59.
    [15] 崔璐,李浩,张文,等.水力喷射工具用35CrMo钢抗冲蚀性能研究[J].石油机械,2015,43(3):83-87.CUI Lu,LI Hao,ZHANG Wen,et al.Study on erosion-resistance of 35CrMo steel for hydraulic jetting tools[J].China Petroleum Machinery,2015,43(3):83-87.
    [16] 杨向同,周鹏遥,丁亮亮,等.P110油管用钢液固两相流体冲蚀实验研究[J].科学技术与工程,2014,14(30):140-143.YANG Xiangtong,ZHOU Pengyao,DING Liangliang,et al.Experimental study on erosion of P110 steel in liquid-solid two-phase flow[J].Science Technology and Engineering,2014,14(30):140-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700