用户名: 密码: 验证码:
铁素体/贝氏体多相组织钢硬化行为表征参数
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characterization parameters for strain hardening behavior of ferrite/bainite multi-phase steel
  • 作者:汤忖江 ; 尚成嘉 ; 夏佃秀 ; 周云 ; 陈蕴博
  • 英文作者:TANG Cun-jiang;SHANG Cheng-jia;XIA Dian-xiu;ZHOU Yun;CHEN Yun-bo;State Key Laboratory of Advanced Forming Technology and Equipment, Beijing National Innovation Institute of Lightweight Ltd.;Collaborative Innovation Center of Steel Technology,University of Science and Technology Beijing;School of Mechanical Engineering, University of Jinan;Wire/Rod Group, Institute of Research of Iron and Steel;
  • 关键词:铁素体/贝氏体多相钢 ; 大变形管线钢 ; 应变硬化指数 ; 应力比 ; 屈强比 ; 伸长率
  • 英文关键词:ferrite/bainite multi-phase steel;;high deformability pipeline steel;;strain hardening exponent;;stress ratio;;yield strength/tensile strength ratio;;elongation
  • 中文刊名:IRON
  • 英文刊名:Journal of Iron and Steel Research
  • 机构:北京机科国创轻量化科学研究院有限公司先进成形技术与装备国家重点实验室;北京科技大学钢铁共性技术协同创新中心;济南大学机械工程学院;江苏省(沙钢)钢铁研究院棒线材研究室;
  • 出版日期:2019-06-15
  • 出版单位:钢铁研究学报
  • 年:2019
  • 期:v.31
  • 基金:国家重点基础研究发展计划资助项目(2010CB630801)
  • 语种:中文;
  • 页:IRON201906007
  • 页数:10
  • CN:06
  • ISSN:11-2133/TF
  • 分类号:51-60
摘要
为了研究大变形管线钢应变硬化行为及其表征参数之间关联性,采用TMCP工艺调控制备了9种不同贝氏体体积分数的铁素体/贝氏体(F/B)多相组织钢。通过力学性能及应变硬化行为分析,对应变硬化指数、应力比、屈强比和伸长率等大变形管线钢应变硬化能力表征参数之间的关联性及其机制、内涵和适用范围进行了研究。结果表明,F/B多相钢中,应力比R_(t2.0)/R_(t1.0)和均匀伸长率与应变硬化指数呈线性正比关系,屈强比与应变硬化指数呈非线性反比关系,应力比R_(t5.0)/R_(t1.0)在一定条件下与应变硬化指数存在线性关系,应力比R_(t1.5)/R_(t0.5)、总伸长率、应变硬化指数之间不具备明显的关系。通过应变硬化行为分析合理阐释了以上参数之间的关联机制,并阐释了其内涵和适用范围。硬化指数、均匀伸长率和应力比R_(t2.0)/R_(t1.0)应作为描述F/B多相钢塑性形变阶段应变硬化能力的主要参数,屈强比和应力比R_(t5.0)/R_(t1.0)则应作为次要参数。采用工业化生产数据对上述结论进行了验证,与所得结论吻合良好。
        In order to investigate the strain hardening behavior and the correlation of characterization parameters of high deformability pipeline steel, nine kinds of ferrite/bainite(F/B) multi-phase steels with different volume fractions of bainite were obtained by thermo-mechanical controlled processing(TMCP). The relationships among the characterization parameters of strain hardening capability for high deformation pipeline steel, such as strain hardening exponent, stress ratio, yield strength/tensile strength ratio(yield ratio) and elongation, the correlation mechanisms as well as the connotations and the scopes of application of the parameters were investigated by analyzing the mechanical properties and strain hardening behavior. The results show that the stress ratio of R_(t2.0)/R_(t1.0) and uniform elongation have positive linear correlation with the strain hardening exponent, while yield ratio has a negative nonlinear correlation with the strain hardening exponent. There is a linear relationship between stress ratio of R_(t5.0)/R_(t1.0) and strain hardening exponent under certain conditions, the relationships among stress ratio of R_(t1.5)/R_(t0.5), total elongation and strain hardening exponent are not obvious. The correlation mechanisms of these parameters had been reasonably elucidated by strain hardening analysis; moreover, the connotations and scopes of application for the parameters were also discussed. It is indicated that strain hardening exponent, uniform elongation, and stress ratio of R_(t2.0)/R_(t1.0) should be used as the major parameters for characterizing the strain hardening capability of plastic deformation stage for the F/B multi-phase steel, while yield ratio and stress ratio of R_(t5.0)/R_(t1.0) should be used as minor parameters. Data of industrial production were employed to verify the above conclusions, and a good agreement had been obtained.
引文
[1] Ji L K,Chen H Y,Huo C Y,et al.Key issues in the specification of high strain line pipe used in strain-based designed districts of the 2nd west to east pipeline[C]//Proceedings of IPC2008 7th International Pipeline Conference.Calgary:ASME,2008:695.
    [2] 李鹤林,吉玲康,田伟.西气东输一,二线管道工程的几项重大技术进步[J].天然气工业,2010,30(4):1.(Li H L,Ji L K,Tian W.Significant technical progress in the West-East Gas Pipeline projects-Line One and Line Two[J].Natural Gas Industry,2010,30(4):1.)
    [3] 刘文月,任毅,高红,等.大变形管线钢研究进展[J].鞍钢技术,2016,(5):8.(Liu W Y,Ren Y,Gao H,et al.Development progress of high-strain pipeline steel[J].Angang Technology,2016(5):8.)
    [4] 王伟,严伟,胡平,等.抗大变形管线钢的研究进展[J].钢铁研究学报,2011,23(2):1.(Wang W,Yan W,Hu P,et al.Research progress on high deformability pipeline steels[J].Journal of Iron and Steel Research,2011,23(2):1.)
    [5] 吉玲康,李鹤林,陈宏远,等.管线钢管局部屈曲应变分析与计算[J].应用力学学报,2012,29(6):758.(Ji L K,Li H L,Chen H Y,et al.Analysis of local buckling strain of line pipe[J].Chinese Journal of Applied Mechanics,2012,29(6):758.)
    [6] Vazouras P,Karamanos S A,Dakoulas P.Mechanical behavior of buried steel pipes crossing active strike-slip faults[J].Soil Dynamics and Earthquake Engineering,2012,41:164.
    [7] 高惠临,张骁勇.大变形管线钢的研究和开发[J].焊管,2014,37(4):14.(Gao H L,Zhang X Y.Research and development of large deformability pipeline steels[J].Welded Pipe and Tube,2014,37(4):14.)
    [8] Ishikawa N,Endo S,Kondo J.High performance UOE linepipes[J].JFE Technical Report,2006(7):20.
    [9] 李鹤林,李霄,吉玲康,等.油气管道基于应变的设计及抗大变形管线钢的开发与应用[J].焊管,2007,30(5):5.(Li H L,Li X,Ji L K,et al.Strain-based besign for pipeline and development of pipe steels with high deformation resistance[J].Welded Pipe and Tube,2007,30(5):5.)
    [10] Bag A,Ray K K,Dwarakadasa E S.Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels[J].Metallurgical and Materials Transactions,1999,30A(5):1193.
    [11] Movahed P,Kolahgar S,Marashi S P H,et al.The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite–martensite dual phase steel sheets[J].Materials Science and Engineering,2009,518A(1/2):1.
    [12] Ishikawa N,Okatsu M,Shimamura J,et al.Development and production of ultra-high strength linepipes with dual-phase microstructure for high strain application[C]//Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering.San Diego:ASME,2007:185.
    [13] Zhang X Y,Gao H L,Zhang X Q,et al.Effect of volume fraction of bainite on microstructure and mechanical properties of X80 pipeline steel with excellent deformability[J].Materials Science and Engineering,2012,531A:84.
    [14] Kim Y M,Kim S K,Lim Y J,et al.Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels[J].ISIJ International,2002,42(12):1571.
    [15] 聂文金,尚成嘉,关海龙,等.铁素体/贝氏体(F/B)双相钢组织调控及其抗变形行为分析[J].金属学报,2012,48(3):298.(Nie W J,Shang C J,Guan H L,et al.Control of microstructures of ferrite/bainite(F/B) dual-phase steels and analysis of their resistance to deformation behavior[J].Acta Metallurgica Sinica,2012,48(3):298.)
    [16] Lian J,Jiang Z,Liu J.Theoretical model for the tensile work hardening behaviour of dual-phase steel[J].Materials Science and Engineering,1991,147A(1):55.
    [17] Tomita Y,Okabayashi K.Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite[J].Metallurgical Transactions,1985,16A(1):73.
    [18] Reed-Hill R E,Cribb W R,Monteiro S N.Concerning the analysis of tensile stress-strain data using log dσ/dεp versus logσ diagrams[J].Metallurgical Transactions,1973,4(11):2665.
    [19] Zhao M C,Yang K,Xiao F R,et al.Continuous cooling transformation of undeformed and deformed low carbon pipeline steels[J].Materials Science and Engineering,2003,355A(1/2):126.
    [20] 谭峰亮,刘清友,贾书君,等.含铌抗大变形管线钢奥氏体的连续冷却转变[J].钢铁研究学报,2012,24(7):35.(Tan F L,Liu Q Y,Jia S J,et al.Continuous transformation of Nb bearing high-deformability pipeline steel[J].Journal of Iron and Steel Research,2012,24(7):35.)
    [21] 解家英,王凤琴,宁林新,等.X80管线钢中Nb元素析出规律的研究[J].钢铁研究学报,2010,22(9):38.(Xie J Y,Wang F Q,Ning L X,et al.Research on precipitated rule of Nb in X80 pipeline steel[J].Journal of Iron and Steel Research,2010,22(9):38.)
    [22] 杨景红,刘清友,孙冬柏,等.冷速及变形对X70级管线钢相变及组织的影响[J].材料热处理学报,2008,29(5):59.(Yang J H,Liu Q Y,Sun D B,et al.Effect of cooling rate and deformation on transformation and microstructure of a X70 grade pipeline steel[J].Transactions of Materials and Heat Treatment,2008,29(5):59.)
    [23] Tsuru E,Hara T,Shinohara Y,et al.Development of high-deformability,high-strength line pipes for ultra-low-temperature use[R].Nippon Steel and Sumitomo Metal Technical Report,2015(107):44.
    [24] Liu B,Liu X J,Zhang H.Strain-based design criteria of pipelines[J].Journal of Loss Prevention in the Process Industries,2009,22(6):884.
    [25] 高惠临.管线钢屈强比分析与评述[J].焊管,2010,33(6):10.(Gao H L.Analysis and commentary on yield ratio of pipeline steel[J].Welded Pipe and Tube,2010,33(6):10.)
    [26] 黄明志,骆竞晞,贺保平.金属硬化曲线的阶段性和最大均匀应变[J].金属学报,1983,19(4):291.(Huang M Z,Luo J X,He B P.Stages on strain hardening curve and ultimate uniform strain[J].Acta Metallurgica Sinica,1983,19(4):291.)
    [27] Choi K S,Liu W N,Sun X,et al.Influence of manufacturing processes and microstructures on the performance and manufacturability of advanced high strength steels[J].Journal of Engineering Materials and Technology,2009,131(4):041205.
    [28] Das D,Chattopadhyay P P.Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel[J].Journal of Materials Science,2009,44(11):2957.
    [29] Korzekwa D A,Matlock D K,Krauss G.Dislocation substructure as a function of strain in a dual-phase steel[J].Metallurgical and Materials Transactions,1984,15A:1221.
    [30] Tomita Y,Okabayashi K.Tensile stress-strain analysis of cold worked metals and steels and dual-phase steels[J].Metallurgical Transactions,1985,16A(5):865.
    [31] Samuel F H.Tensile stress-strain analysis of dual-phase structures in an Mn-Cr-Si steel[J].Materials Science and Engineering,1987,92:L1.
    [32] 方健,魏毅静,王承忠.拉伸应变硬化指数的解析测定及力学分析[J].塑性工程学报,2003,10(3):12.(Fang J,Wei Y J,Wang C Z.Analytical measurement and mechanical study on the tensile strain hardening exponent[J].Journal of Plasticity Engineering,2003,10(3):12.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700