用户名: 密码: 验证码:
近共晶成分Ni-P非晶合金微结构特征的原子模拟分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Atomistic Simulation for Local Atomic Structures of Amorphous Ni-P Alloys with Near-Eutectic Compositions
  • 作者:彭超 ; 李媛 ; 邓永和 ; 彭平
  • 英文作者:PENG Chao;LI Yuan;DENG Yonghe;PENG Ping;School of Materials Science & Engineering,Hunan Universuty;
  • 关键词:Ni-P非晶合金 ; 分子动力学 ; BSAP结构 ; 非晶形成能力
  • 英文关键词:amorphous Ni-P alloy;;molecular dynamics;;BSAP cluster;;glass forming ability
  • 中文刊名:JSXB
  • 英文刊名:Acta Metallurgica Sinica
  • 机构:湖南大学材料科学与工程学院;
  • 出版日期:2017-12-11
  • 出版单位:金属学报
  • 年:2017
  • 期:v.53
  • 基金:国家自然科学基金项目Nos.51071065和51428101~~
  • 语种:中文;
  • 页:JSXB201712013
  • 页数:10
  • CN:12
  • ISSN:21-1139/TG
  • 分类号:121-130
摘要
采用分子动力学方法模拟了Ni_(100-x)P_x(x=19.0、19.4、19.6、19.8、20.0、21.0)合金在冷速为5×10~(12)K/s下的快速凝固过程,并采用Voronoi多面体指数和团簇类型指数(Zn_i/(ijkl)_i…)对其局域原子结构进行了表征。结果发现,Ni原子的团簇属性主要是高配位(Z≥12)的Frank-Kasper团簇及其变形结构,典型的化学短程序为NiZ-2P3,基本团簇间可通过交叉共享(IS)联结形成中程序结构;而P原子的局域结构除了Z=10的BSAP多面体外,还存在大量高配位(特别是Z=12)的Frank-Kasper结构形态,典型的化学短程序为Ni_(12)P;并且,P芯基本团簇的壳层原子全部为Ni,其间只能通过顶点共享(VS)、边共享(ES)和面共享(FS)联结形成扩展团簇。BSAP多面体及其相关结构被证实对Ni_(100-x)P_x非晶合金的形成具有重要影响,其数量在共晶点x=19.6时最多,偏离共晶点越远,所占比例越小,其结果与不同浓度下Ni_(100-x)P_x合金非晶形成能力的变化趋势一致。这可能就是Ni-P合金在共晶点具有最强非晶形成能力的原因。
        Ni_(100-x)P_x alloys with near-eutectic compositions have a strong glass forming ability(GFA),but the microstructure prototypes and their evolution in various solidification processes are still unclear now. To reveal their unique structures, a series of molecular dynamics simulations for the rapid solidification process of liquid Ni_(100-x)P_x(x=19.0, 19.4, 19.6, 19.8, 20.0, 21.0) alloys were performed at a cooling rate of 5×1012 K/s, and their local atomic configurations at 300 K were characterized by Voronoi polyhedron index and cluster type index (Zn_i/(ijkl)_i…) .The results show that the local atomic structures of Ni atoms are mainly Frank-Kasper clusters with high coordination(Z≥12) as well as their distorted configurations. Their chemical short-range orders are mostly Ni_(Z-2)P_3, and these basic clusters can be further aggregated into medium-range orders(MROs) by intercross-sharing(IS) linkages. The majority of P-centered clusters are bi-capped square Archimedean anti-prism(BSAP) polyhedrons, but lots of FrankKasper clusters with higher coordination exist in the amorphous Ni_(100-x)P_x alloys. Their typical chemical short-range orders are Ni12 P. In these short range orders(SROs) centered by P, all shell atoms are found to be Ni atoms, and no MRO can be detected except for their extended clusters linked by vertex-sharing(VS), edge-sharing(ES) and face-sharing(FS). The BSAP polyhedrons and their correlative structures play a crucial role in the formation of amorphous Ni_(100-x)P_x alloy. Their quantity is demonstrated to have a significant impact on the glass transformation of rapidly solidified Ni_(100-x)P_x alloys. It is found that the number of BSAP polyhedrons and their deformed structures at eutectic composition point x=19.6 is the largest among Ni_(100-x)P_x alloys, and the farther x deviates from the eutectic composition point, the smaller the proportion of BSAP polyhedrons and their structures more related to all P-centered clusters, which are consistent with the variation tendency of GFAs of Ni_(100-x)P_x alloys. Maybe, it could be responsible for the existence of the strongest GFAs at the eutectic composition point of Ni_(100-x)P_x alloys.
引文
[1]Brenner A,Riddell G.Deposition of nickel and cobalt by chemical reduction[J].J.Res.Nat.Bur.Stand.,1947,39:385
    [2]Sui M L,Lu K.Microstructures of crystallites in nanocrystalline NiP alloys[J].Acta Metall.Sin.,1994,30:413(隋曼龄,卢柯.纳米晶体Ni-P合金晶粒微观结构的研究[J].金属学报,1994,30:413)
    [3]Sui M L.An investigation on the recovery behaviors of the lattice distortions in an Ni3P/Ni nanophase material[J]Acta Metall.Sin.,1998,34:650(隋曼龄.Ni3P/Ni复相纳米材料晶格畸变的热回复行为研究[J].金属学报,1998,34:650)
    [4]Budurov S,Fotty V,Toncheva S,et al.The glass-forming ability in the ternary Ni-Co-P and Ni-Cu-P systems[J].Mater.Sci.Eng.,1991,A133:455
    [5]Paseka I.Hydrogen evolution reaction on Ni-P alloys:The internal stress and the activities of electrodes[J].Electrochim.Acta,2008,53:4537
    [6]Hameed R M A,Fekry A M.Electrochemical impedance studies of modified Ni-P and Ni-Cu-P deposits in alkaline medium[J].Electrochim.Acta,2010,55:5922
    [7]Nash P.Phase Diagrams of Binary Nickel Alloys[M].Ohio:ASM International,1991:2833
    [8]Schmetterer C,Vizdal J,Ipser H.A new investigation of the system Ni-P[J].Intermetallics,2009,17:826
    [9]Huang Q S,Liu L,Li J F,et al.Redetermination of the eutectic composition of the Ni-P binary alloy[J].J.Phase Equilib.Diff.,2010,31:532
    [10]Huang Q S,Lu B F,Kong L T,et al.On the glass-forming ability of Ni-P binary alloys[J].Mater.Res.Bull.,2012,47:1973
    [11]Kraus L,Ha?lar V,Duhaj P,et al.The structure and magnetic properties of nanocrystalline Co21Fe64-xNbxB15alloys[J].Mater.Sci.Eng.,1997,A226-228:626
    [12]Cheng Y Q,Ma E.Atomic-level structure-property relationship in metallic glasses[J].Prog.Mater.Sci.,2011,56:379
    [13]Ding J,Cheng Y Q,Sheng H W,et al.Short-range structural signature of excess specific heat and fragility of metallic glass-forming supercooled liquids[J].Phys.Rev.,2012,85B:060201
    [14]Laws K J,Miracle D B,Ferry M.A predictive structural model for bulk metallic glasses[J].Nat.Commun.,2015,6:8123
    [15]Bennett M R,Wright J G.Amorphous films of the transition elements[J].Phys.Stat.Sol.,1972,13:135
    [16]Lu K,Wang J T.A micromechanism for crystallization of amorphous alloys I.An in situ TEM observation[J].J.Cryst.Growth,1991,112:525
    [17]Lu K,Sui M L,Wang J T.A micromechanism for crystallization of amorphous alloys II.Bulk crystallization process[J].J.Cryst.Growth,1991,113:242
    [18]Luo W K,Ma E.EXAFS measurements and reverse Monte Carlo modeling of atomic structure in amorphous Ni80P20alloys[J].J.Non-Cryst.Solids,2008,354:945
    [19]Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J].J.Comput.Phys.,1995,117:1
    [20]Mendelev M I,Sordelet D J,Kramer M J.Using atomistic computer simulations to analyze X-ray diffraction data from metallic glasses[J].J.Appl.Phys.,2007,102:043501
    [21]Martyna G J,Tobias D J,Klein M L.Constant pressure molecular dynamics algorithms[J].J.Chem.Phys.,1994,101:4177
    [22]Verlet L.Computer experiments on classical fluids:I.Thermodynamical properties of lennard-jones molecules[J].Phys.Rev.,1967,159:98
    [23]Finney J L.Random packings and the structure of simple liquids.II.The molecular geometry of simple liquids[J].Proc.R.Soc.Lond.,1970,319A:495
    [24]Wei Y D,Peng P,Yan Z Z,et al.A comparative study on local atomic configurations characterized by cluster-type-index method and Voronoi polyhedron method[J].Comput.Mater.Sci.,2016,123:214
    [25]Mo Y F,Liu R S,Liang Y C,et al.Molecular dynamics simulation on the evolution of microstructures of liquid ZnxAl100-xalloys during rapid solidification[J].Acta Metall.Sin.,2012,48:907(莫云飞,刘让苏,梁永超等.ZnxAl100-x合金快凝过程中微结构演变特性的分子动力学模拟[J].金属学报,2012,48:907)
    [26]Wigner E,Seitz F.On the constitution of metallic sodium[J].Phys.Rev.,1933,43:804
    [27]Lamparter P.Reverse monte carlo simulation of amorphous Ni80P20and Ni81B19[J].Phys.Scr.,1995,57:72
    [28]Swope W C,Andersen H C.106-particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid[J].Phys.Rev.,1990,41B:7042
    [29]Brostow W,Chybicki M,Laskowski R,et al.Voronoi polyhedra and Delaunay simplexes in the structural analysis of molecular-dynamics-simulated materials[J].Phys.Rev.,1998,57B:13448
    [30]Yu D Q,Chen M,Han X J.Structure analysis methods for crystalline solids and supercooled liquids[J].Phys.Rev.,2005,72E:051202
    [31]Gao W,Feng S D,Qi L,et al.Local five-fold symmetry and diffusion behavior of Zr64Cu36amorphous alloy based on molecular dynamics[J].Chin.Phys.Lett.,2015,32:116101
    [32]Honeycutt J D,Andersen H C.Molecular dynamics study of melting and freezing of small Lennard-Jones clusters[J].J.Phys.Chem.,1987,91:4950
    [33]Deng Y H,Wen D D,Peng C,et al.Heredity of icosahedrons:A kinetic parameter related to glass-forming abilities of rapidly solidified Cu56Zr44alloys[J].Acta Phys.Sin.,2016,65:066401(邓永和,文大东,彭超等.二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数[J].物理学报,2016,65:066401)
    [34]Wen D D,Peng P,Jiang Y Q,et al.The effect of cooling rates on hereditary characteristics of icosahedral clusters in rapid solidification of liquid Cu56Zr44alloys[J].J.Non-Cryst.Solids,2014,388:75
    [35]Hou Z Y,Liu L X,Liu R S,et al.Short-range and medium-range order in Ca7Mg3metallic glass[J].J.Appl.Phys.,2010,107:083511
    [36]Wen D D,Peng P,Jiang Y Q,et al.A track study on icosahedral clusters inherited from liquid in the process of rapid solidification of Cu64Zr36alloy[J].Acta Phys.Sin.,2013,62:196101(文大东,彭平,蒋元祺等.快凝过程中液态Cu64Zr36合金二十面体团簇遗传与演化跟踪[J].物理学报,2013,62:196101)
    [37]Sheng H W,Luo W K,Alamgir F M,et al.Atomic packing and short-to-medium-range order in metallic glasses[J].Nature,2006,439:419

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700