用户名: 密码: 验证码:
生物质活性炭原位修复有机物污染底泥技术研究与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research and Application of In-Situ Activated Biochar Amendment for Organic Contaminated Sediment Remediation
  • 作者:周岩梅 ; 任传华 ; 孟晓东 ; 汪述宁 ; 蒋佳益 ; 杨楠 ; 赫畅
  • 英文作者:ZHOU Yanmei;REN Chuanhua;MENG Xiaodong;WANG Shuning;JIANG Jiayi;YANG Nan;HE Chang;Department of Civil and Environmental Engineering,School of Civil Engineering,Beijing Jiaotong University;Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard,Beijing Jiaotong University;Northeast Pharmaceutical Group Co.,Ltd.;
  • 关键词:生物质活性炭 ; 有机物污染底泥 ; 原位修复
  • 英文关键词:activated biochar;;organic contaminated sediment;;in-situ remediation
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:北京交通大学土木建筑工程学院市政与环境工程系;北京交通大学水中典型污染物控制与水质保障北京市重点实验室;东北制药集团股份有限责任公司;
  • 出版日期:2018-11-07 14:05
  • 出版单位:环境科学研究
  • 年:2019
  • 期:v.32;No.252
  • 基金:国家水体污染控制与治理科技重大专项(No.2012ZX07202-002);; 大学生创新训练项目(No.170130051,170130061)~~
  • 语种:中文;
  • 页:HJKX201901006
  • 页数:9
  • CN:01
  • ISSN:11-1827/X
  • 分类号:49-57
摘要
污染底泥是水体中重要的内源污染,生物质活性炭作为原位修复技术的覆盖材料,正在逐步应用于污染底泥的原位修复.应用椰壳颗粒活性炭与果壳颗粒活性炭对有机物污染底泥进行原位修复,测定2种生物质活性炭的比表面积、孔径分布、表面官能团等理化性质,并应用2种生物质活性炭进行了原位治理污染底泥的实验室静态模拟试验和实地现场试验,在实地现场试验中增加煤基活性炭与2种生物质活性炭进行对比.结果表明:(1)2种生物质活性炭的表面性质与化学组成相似,但椰壳颗粒活性炭比表面积较大,微孔孔隙结构略微发达,极性基团较少.(2)实验室静态模拟试验中,2种生物质活性炭对底泥中的PAHs (多环芳烃)、PAEs (酞酸酯)和苯系物(benzenes) 3类有机污染物均有很好的稳定化修复效果,投加生物质活性炭10个月后,底泥孔隙水中3类污染物的质量浓度降低93. 2%以上;对不同种类有机污染物,孔隙水降低率略有差距,与2种生物质活性炭理化性质的差异有关.(3)实地现场试验中,2种生物质活性炭和煤基活性炭对3类有机污染物的稳定化修复效果均呈现PAEs>PAHs>苯系物,煤基活性炭的修复效果略高于2种生物质活性炭.研究显示,在10个月的修复时间下,生物质活性炭对有机物污染底泥有明显的修复效果,可使底泥孔隙水中PAHs、PAEs和苯系物类有机污染物质量浓度降低90%以上,并且与煤基活性炭相比,生物质活性炭对环境造成的污染印迹更小.
        Contaminated sediment is an important endogenous source of pollution in water bodies. Research on the control of sediment contamination has received much attention. As an in-situ remediation technology,biomass activated carbon is gradually being applied to the treatment of polluted sediment. In order to study the mechanism of coconut shell granular activated carbon and fruit shell granular activated carbon treatment of organic contaminants in the sediment,the physicochemical properties such as specific surface area,pore size,and surface functional groups of the two activated carbons were determined. Laboratory static simulation and field experiments of in-situ remediation of organic contaminated sediment were conducted and compared with traditional coal-based activated carbon. The experimental data indicated that:(1) The surface properties and chemical composition of the two biomass activated carbons were similar.Compared with fruit shell granular activated carbon,coconut shell granular activated carbon had a larger specific surface area,slightly more porous structure,and fewer polar groups.(2) Laboratory static simulation experiments show that both biomass activated carbons had a good stabilizing effect on polycyclic aromatic hydrocarbons( PAHs),phthalate esters( PAEs) and benzenes in the sediment. After adding the biomass activated carbon for 10 months,the concentrations of 3 pollutants in sediment pore water decreased by more than93. 2%. There was a slight difference in the decrease rate of the pore water concentrations among different organic contaminants. The biomass activated carbons were slightly less effective that the coal-based activated carbon. The application of biomass activated carbon to contaminated sediment remediation needs further study.
引文
[1]孟晓东.炭质吸附剂原位治理污染底泥技术研究[D].北京:北京交通大学,2016.
    [2]王瑾.PAHs在天然水体沉积物中的迁移转化及生态效应[J].广州化工,2011,39(10):151-153.WANG Jin.Migration transformation and ecological effects of PAHs in the natural sediments[J]. Guangzhou Chemical Industry,2011,39(10):151-153.
    [3]皮运正,云桂春,何仕均.活性炭深度处理工艺用于地下回灌的水质研究[J].环境科学研究,2001,14(5):27-29.PI Yunzheng,YUN Guichun,HE Shijun. Water quality study of granular activated carbon treatment used for groundwater recharge[J].Research of Environmental Sciences,2001,14(5):27-29.
    [4] GHOSH U,LUTHY R G,COMELISSEN G,et al. In-situ sorbent amendments:a new direction in contaminated sediment management[J]. Environmental Science&Technology,2011,45(4):1163-1168.
    [5]王海龙,常学秀,王焕校.我国富营养化湖泊底泥污染治理技术展望[J].楚雄师范学院学报,2006,21(3):41-46.WANG Hailong,CHANG Xuexiu,WANG Huanxiao. The review of the treatment techniques for polluted sediment in eutrophicated lakes of China[J].Journal of Chuxiong Normal University,2006,21(3):41-46.
    [6]贺宝根,周乃晟.底泥对河流的二次污染浅析[J].环境污染与防治,1999(3):41-43.HE Baogen,ZHOU Naisheng. On contribution of sediment to secondary pollution of river[J].Environmental Pollution&Control,1999(3):41-43.
    [7]刘军,刘彤宙,赵达.原位注射硝酸钙技术修复污染底泥操作对底泥中硝态氮和氨氮释放的影响[J].水利水电技术,2015,46(2):23-27.
    [8]王永华,钱少猛,徐南妮,等.巢湖东区底泥污染物分布特征及评价[J].环境科学研究,2004,17(6):22-26.WANG Yonghua,QIAN Shaomeng,XU Nanni,et al. Characteristics of distribution of pollutants and evaluation in sediment in the east area of Chaohu Lake[J]. Research of Environmental Sciences,2004,17(6):22-26.
    [9]冯俊生,张俏晨.土壤原位修复技术研究与应用进展[J].生态环境学报,2014(11):1861-1867.FENG Junsheng,ZHANG Qiaochen. A review on the study on practice of soil remediation in situ[J]. Ecology and Environment Sciences,2004,17(6):22-26.
    [10]韩宁,魏连启,刘久荣,等.地下水中常见有机污染物的原位治理技术现状[J].城市地质,2009,4(1):22-30.
    [11] WU J,LIU Q Y,MENG S Q,et al. Research on the absorption characteristics of activated carbon prepared by biomass[J].Advanced Materials Research,2012,354/355:707-710.
    [12] JIN Z,ZHAO G,UNIVERSITY B F. Research progress of pore control and structure characterization of biomass-based activated carbon fiber[J].Scientia Silvae Sinicae,2013,49(10):140-147.
    [13] HU L,WU F,PENG S,et al.Progress in preparation and utilization of biomass-based activated carbons[J]. Chemistry,2016,79(3):205-212.
    [14] LIN M L,CUI F Y,YIN X T,et al.Analysis of powdered activated carbon adsorption process in coping with sudden pollution of chlorobenzene in raw water[J]. Journal of Civil Architectural&Environmental Engineering,2011,33(5):132-136.
    [15]唐艳,胡小贞,卢少勇.污染底泥原位覆盖技术综述[J].生态学杂志,2007,26(7):1125-1128.TANG Yan,HU Xiaozhen,LU Shaoyong.In situ capping technology for remediation of contaminated sediment[J]. Chinese Journal of Ecology,2007,26(7):1125-1128.
    [16]邹彦江.重金属污染底泥原位覆盖技术研究[D].济南:山东建筑大学,2015.
    [17]孙艳,黄璜,胡洪营,等.污水处理厂出水中雌激素活性物质浓度与生态风险水平[J].环境科学研究,2010,23(12):1488-1493.SUN Yan,HUANG Huang,HU Hongying,et al. Concentration and ecological risk level of estrogenic endocrine-disrupting chemicals in the effluents from wastewater treatment plants[J]. Research of Environmental Sciences,2010,23(12):1488-1493.
    [18] TANG Yan,HU Xiaozhen,LU Shaoyong.In situ capping technology for remediation of contaminated sediment[J]. Chinese Journal of Ecology,2007,26(7):1125-1128.
    [19] FARRINGTON J W,GOLDBERG E D,RISEBROUGH R W,et al.U.S.‘Mussel Watch’1976-1978:an overview of the trace-metal,DDE,PCB,hydrocarbon and artificial radionuclide data[J].Environmental Science&Echnology,1983,17(8):490-496.
    [20] REIBLE D D.An assessment of the design of in situ management approaches for contaminated sediments[D]. Austin:The University of Texas at Austin,2010.
    [21] GHOSH U,ZIMMERMAN J R,LUTHY R G. PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability[J]. Environmental Science&Technology,2003,37(10):2209-2217.
    [22] TALLEY J W,GHOSH U,TUCKER S G,et al. Particle-scale understanding of the bioavailability of PAHs in sediment[J].Environmental Science&Technology,2002,36(3):477-483.
    [23] ZIMMERMAN J R,GHOSH U,MILLWARD R N,et al.Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine sediments:physicochemical tests[J]. Environmental Science&Technology,2004,38(20):5458-5464.
    [24] GHOSH U,LUTHY R G,CORNELISSEN G,et al.In-situ sorbent amendments:a new direction in contaminated sediment management[J]. Environmental Science&Technology,2011,45(4):1163-1168.
    [25] CULLEN A C,ALTSHUL L M,VORHEES D J.Effect of sediment remediation on polychlorinated biphenyl concentrations in tomatoes grown near new bedford harbor[J]. Integrated Environmental Assessment&Management,2010,3(4):484-490.
    [26] BECKINGHAM B,GHOSH U. Field-scale reduction of PCB bioavailability with activated carbon amendment to river sediments[J].Environmental Science&Technology,2011,45(24):10567-10574.
    [27] DAS S. Characterization of activated carbon of coconutshell,rice husk and karanja oil cake[D]. Rourkela:National Institute of Technology,2014.
    [28] LIN M L,CUI F Y,YIN X T,et al.Analysis of powdered activated carbon adsorption process in coping with sudden pollution of chlorobenzene in raw water[J]. Journal of Civil Architectural&Environmental Engineering,2011,33(5):132-136.
    [29]范娟,周岩梅.LDPE膜被动采样技术预测模型的建立及其应用[J].中国环境科学,2015,35(11):3340-3345.FAN Juan,ZHOU Yanmei. The establishment and application of predict model for passive sampling technique with LDPE membranes[J]. China Environmental Science,2015,35(11):3340-3345.
    [30]孙仲超.我国煤基活性炭生产现状与发展趋势[J].煤质技术,2010(4):49-52.SUN Zhongchao.The present status and development trend of coal based activated carbon industry[J]. Goal Quality and Technology,2010(4):49-52.
    [31] FERNANDEZ L A,LAO W,MARUYA K A,et al.Passive sampling to measure baseline dissolved persistent organic pollutant concentrations in the water column of the palos verdes shelf superfund site[J]. Environmental Science&Technology,2012,46(21):11937-11947.
    [32] HILBER I.Activated carbon amendment to remediate contaminated sediments and soils:a review[J]. Global Nest Journal,2010,12(3):305-317.
    [33] HEGDE G,DIVYASHREE A. Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications:a review[J].Rsc Advances,2015,107(5):88339-88352.
    [34] WEIL R R,ISLAM K R,STINE M A,et al.Estimating active carbon for soil quality assessment:a simplified method for laboratory and field use[J].American Journal of Alternative Agriculture,2003,18(1):15.
    [35] PEEL R G,BENEDEK A,CROWE C M.A branched pore kinetic model for activated carbon adsorption[J]. Aiche Journal,2010,27(1):26-32.
    [36] FOO K Y,HAMEED B H. Detoxification of pesticide waste via activated carbon adsorption process[J]. Journal of Hazardous Materials,2010,175(1):1-11.
    [37]周岩梅,张琼,刁晓华,等.硝基苯和西维因在活性炭上的吸附效果及动力学研究[J].中国环境科学,2010,30(9):1177-1182.ZHOU Yanmei,ZHANG Qiong,DIAO Xiaohua,et al. Sorption and sorption kinetics of nitrobenzene and sevin on activated carbon[J].China Environmental Science,2010,30(9):1177-1182.
    [38]张琼,周岩梅,孙素霞,等.农药西维因及敌草隆在草木灰上的吸附行为研究[J].中国环境科学,2012,32(3):529-534.ZHANG Qiong,ZHOU Yanmei,SUN Suxia,et al. Sorption characteristics of sevin and diuron on plant ash[J]. China Environmental Science,2012,32(3):529-534.
    [39]周岩梅,张琼,孙素霞,等.敌草隆在市售草木灰及生物质电厂灰上的吸附特性研究[J].环境科学学报,2012,32(7):1612-1619.ZHOU Yanmei,ZHANG Qiong,SUN Suxia,et al. Sorption characteristics of diuron on merchant biomass ash and biomass power plant ashes[J].Acta Scientiae Cirumstantiae,2012,32(7):1612-1619.
    [40] YEO-MYOUNG C,UPAL G,KENNEDY A J,et al. Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment[J].Environmental Science&Technology,2009,43(10):3815-3823.
    [41]周岩梅,张琼,王东升,等.西维因在活性炭及草木灰上的吸附及解吸特性[J].中国环境科学,2012,32(7):1268-1273.ZHOU Yanmei,ZHANG Qiong,WANG Dongsheng,et al.Adsorption and desorption characteristics of sevin on activated carbon and plant ash[J]. China Environmental Science,2012,32(7):1268-1273.
    [42] SPARREVIK M,SALORANTA T,CORNELISSEN G,et al.Use of life cycle assessments to evaluate the environmental footprint of contaminated sediment remediation[J]. Environmental Science&Technology,2011,45(10):4235-4241.
    [43] CHEN M,DING W,WANG J,et al.Removal of azo dyes from water by combined techniques of adsorption,desorption,and electrolysis based on a supramolecular sorbent[J]. Industrial&Engineering Chemistry Research,2013,52(6):2403-2411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700