用户名: 密码: 验证码:
蓄热式压缩空气储能系统变工况特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Off-design Performance of Compressed Air Energy Storage System With Thermal Storage
  • 作者:郭欢 ; 徐玉杰 ; 张新敬 ; 郭丛 ; 陈海生
  • 英文作者:GUO Huan;XU Yujie;ZHANG Xinjing;GUO Cong;CHEN Haisheng;Institute of Engineering Thermophysics, Chinese Academy of Sciences;
  • 关键词:蓄热式压缩空气储能 ; 变工况特性 ; 系统效率 ; (火用)效率 ; 能量密度
  • 英文关键词:compressed air energy storage system with thermal storage;;off-design performance;;system efficiency;;exergy efficiency;;energy density
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:中国科学院工程热物理研究所;
  • 出版日期:2018-09-27 15:38
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.616
  • 基金:国家自然科学基金项目(51522605);; 国家重点基础研究发展计划项目(973项目)(2015CB251302);; 中国科学院前沿科学重点研究项目(QYZDB-SSW-JSC023)~~
  • 语种:中文;
  • 页:ZGDC201905011
  • 页数:12
  • CN:05
  • ISSN:11-2107/TM
  • 分类号:121-132
摘要
接入可再生能源和电网负荷波动、环境条件改变及系统自身特性等因素使压缩空气储能(compressedairenergy storage,CAES)系统长期处于变工况运行状态。对目前先进的蓄热式压缩空气储能(CAESwiththermalstorage,TS-CAES)系统进行变工况特性研究,建立完善的部件及系统整体变工况模型,并为充分分析其变工况过程,将系统分为压缩段、膨胀段和系统整体3个层面,且采用多种(火用)效率评价压缩段和膨胀段。揭示了质量流量、功率、(火用)效率、热水温度、排水温度、各级压比/膨胀比、换热器温差/压损等关键参数在储能/释能过程中的变化规律。发现滑压较定压运行系统效率提高了2.08个百分点。
        Compressed air energy storage(CAES) systems always work under off-design conditions due to the factors such as: 1) fluctuation of renewable energy and grid load, 2)variations of ambient temperature and pressure, 3)self-characteristics change of the system components. In this paper, an advanced compressed air energy storage system with thermal storage is studied for its off-design performance.Comprehensive off-design models are established for both components and the entire system. In order to explore the off-design process in depth, the system analysis is divided in to three parts: compression, expansion and the entire system analysis. Moreover, several kinds of exergy efficiency are presented, which could be used to evaluate the compression and expansion sections more properly. The variations of key parameters with time in charge and discharge processes are revealed, including mass flow rate, power, exergy efficiency,hot water temperature, temperatures at exit, pressure/expansion ratio of each stage, and temperature difference/pressure loss of the heat exchangers. It is also found that the system efficiency of sliding-pressure operation mode is 2.08 percents higher than that of constant pressure operation modes.
引文
[1]Luo Xing,Wang Jihong,Dooner M,et al.Overview of current development in electrical energy storage technologies and the application potential in power system operation[J].Applied Energy,2015,137:511-536.
    [2]Mahlia T M I,Saktisahdan T J,Jannifar A,et al.A review of available methods and development on energy storage;technology update[J].Renewable and Sustainable Energy Reviews,2014,33:532-545.
    [3]Chen Haisheng,Cong T N,Yang Wei,et al.Progress in electrical energy storage system:a critical review[J].Progress in Natural Science,2009,19(3):291-312.
    [4]徐玉杰,陈海生,刘佳,等.风光互补的压缩空气储能与发电一体化系统特性分析[J].中国电机工程学报,2012,32(20):88-95.Xu Yujie,Chen Haisheng,Liu Jia,et al.Performance analysis on an integrated system of compressed air energy storage and electricity production with wind-solar complementary method[J].Proceedings of the CSEE,2012,32(20):88-95(in Chinese).
    [5]薛小代,刘彬卉,汪雨辰,等.基于压缩空气储能的社区微能源网设计[J].中国电机工程学报,2016,36(12):3306-3313.Xue Xiaodai,Liu Binhui,Wang Yuchen,et al.Micro energy network design for community based on compressed air energy storage[J].Proceedings of the CSEE,2016,36(12):3306-3313(in Chinese).
    [6]Guo Huan,Xu Yujie,Chen Haisheng,et al.Corresponding-point methodology for physical energy storage system analysis and application to compressed air energy storage system[J].Energy,2018,143:772-784.
    [7]Chen Haisheng,Tan Chunqing,Liu Jia,et al.Energy storage system using supercritical air:US9217423[P].2015-12-22.
    [8]Martínez M,Molina M G,Mercado P E.Dynamic performance of compressed air energy storage(CAES)plant for applications in power systems[C]//Proceedings of2010 IEEE/PES Transmission and Distribution Conference and Exposition:Latin America.Sao Paulo,Brazil:IEEE,2010:496-503.
    [9]Ibrahim H,Younès R,Ilinca A,et al.Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas[J].Applied Energy,2010,87(5):1749-1762.
    [10]Marano V,Rizzo G,Tiano F A.Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines,photovoltaic panels and compressed air energy storage[J].Applied Energy,2012,97:849-859.
    [11]Zhang Na,Cai Ruixian.Analytical solutions and typical characteristics of part-load performances of single shaft gas turbine and its cogeneration[J].Energy Conversion and Management,2002,43(9-12):1323-1337.
    [12]Adams T A,Nease J,Tucker D,et al.Energy conversion with solid oxide fuel cell systems:a review of concepts and outlooks for the short-and long-term[J].Industrial&Engineering Chemistry Research,2013,52(9):3089-3111.
    [13]Cohen H,Rogers G F C,Saravanamuttoo H I H,et al.Gas turbine theory[M].4th ed.Burnt Mill,Harlow,England:Longman,1996.
    [14]Khaitan S K,Raju M.Dynamic simulation of air storage-based gas turbine plants[J].International Journal of Energy Research,2013,37(6):558-569.
    [15]Sciacovelli A,Li Yongliang,Chen Haisheng,et al.Dynamic simulation of adiabatic compressed air energy storage(A-CAES)plant with integrated thermal storagelink between components performance and plant performance[J].Applied Energy,2017,185:16-28.
    [16]Mazloum Y,Sayah H,Nemer M.Dynamic modeling and simulation of an isobaric adiabatic compressed air energy storage(IA-CAES)system[J].Journal of Energy Storage,2017,11:178-190.
    [17]李辉,李文,刘栋,等.可调导叶对多级再热向心涡轮特性影响分析[J].中国电机工程学报,2016,36(22):6180-6186.Li Hui,Li Wen,Liu Dong,et al.Effect of adjustable guide vanes on the characteristic of multistage reheating radial inflow turbine[J].Proceedings of the CSEE,2016,36(22):6180-6186(in Chinese).
    [18]张娜,林汝谋,蔡睿贤.压气机特性通用数学表达式[J].工程热物理学报,1996,17(1):21-24.Zhang Na,Lin Rumou,Cai Ruixian.General formulas for axial compressor performance estimation[J].Journal of Engineering Thermophysics,1996,17(1):21-24(in Chinese).
    [19]王仲奇,秦仁.透平机械原理[M].2版.北京:机械工业出版社,1988.Wang Zhongqi,Qin Ren.Principle of turbine machinery[M].2nd ed.Beijing:China Machine Press,1988(in Chinese).
    [20]Ghorbanian K,Gholamrezaei M.An artificial neural network approach to compressor performance prediction[J].Applied Energy,2009,86(7-8):1210-1221.
    [21]Haglind F,Elmegaard B.Methodologies for predicting the part-load performance of aero-derivative gas turbines[J].Energy,2009,34(10):1484-1492.
    [22]卢韶光,林汝谋.燃气透平稳态全工况特性通用模型[J].工程热物理学报,1996,17(4):404-407.Lu Shaoguang,Lin Rumou.Gas turbine steady-state design and off-design characteristic general model[J].Journal of Engineering Thermophysics,1996,17(4):404-407(in Chinese).
    [23]蔡睿贤,胡自勤.余热锅炉变工况计算[J].工程热物理学报,1990,11(1):17-20.Cai Ruixian,Hu Ziqin.Off-design performance calculation of heat recovery steam generators[J].Journal of Engineering Thermophysics,1990,11(1):17-20(in Chinese).
    [24]Dechamps P J,Pirard N,Mathieu P.Part-load operation of combined cycle plants with and without supplementary firing[J].Journal of Engineering for Gas Turbines and Power,1995,117(3):475-483.
    [25]Kim T S,Ro S T.The effect of gas turbine coolant modulation on the part load performance of combined cycle plants,part 1:gas turbines[J].Proceedings of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,1997,211(6):443-451.
    [26]Lee J J,Kang D W,Kim T S.Development of a gas turbine performance analysis program and its application[J].Energy,2011,36(8):5274-5285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700