用户名: 密码: 验证码:
黄土斜坡动力响应特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic Response Characteristics of Loess Slopes
  • 作者:夏坤 ; 董林 ; 李璐
  • 英文作者:XIA Kun;DONG Lin;LI Lu;Key Laboratory of Loess Earthquake Engineering of China Earthquake Agency, Lanzhou Institute of Seismology,China Earthquake Agency;
  • 关键词:黄土场地 ; 斜坡地形 ; 放大效应 ; 动力响应 ; 强震动观测 ; 有限元分析
  • 英文关键词:loess site;;slope terrain;;amplification effect;;dynamic response;;strong motion observation;;finite element analysis
  • 中文刊名:ZBDZ
  • 英文刊名:China Earthquake Engineering Journal
  • 机构:中国地震局兰州地震研究所中国地震局黄土地震工程重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:地震工程学报
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金(51608496,51708525);; 甘肃省青年科技基金计划(1606RJYA228)
  • 语种:中文;
  • 页:ZBDZ201903021
  • 页数:8
  • CN:03
  • ISSN:62-1208/P
  • 分类号:152-159
摘要
斜坡动力响应特征与斜坡形态密切相关,若入射地震波主频接近斜坡卓越频率就会放大斜坡动力响应,甚至造成斜坡失稳。汶川地震对远离震中的黄土地区造成了较为严重的破坏,局部场地震害和地震动放大效应显著。选取汶川地震典型黄土斜坡场地,利用地形台阵流动观测和数值模拟计算相结合的方法,系统开展强震动作用下黄土斜坡场地动力响应特征研究。结果表明:坡顶卓越频率最小,其PGA放大系数甚至达到坡底的1.98,这种现象可能与斜坡高差和入射波波长之比密切相关,比值0.2时坡顶放大效应达到最大。随斜坡坡度增加,放大效应增强,坡顶反应谱卓越周期放大系数可达5,说明斜坡地形对强震地面运动有显著影响。数值计算结果与实际强震观测基本吻合,其结果对黄土地区建设工程抗震设防具有重要的科学与实际意义。
        The Loess Plateau is seated on the upper and middle stream of the Yellow River in northern China, covering an area of 440 000 km~2, with loess deposit thickness ranging from several meters to more than 500 meters. The Loess Plateau is one of the most tectonically active areas of the world and one of the most seismically active regions. More than 1.4 million people have been killed by the earthquakes in the region. The Wenchuan M_S8.0 earthquake in 2008 collapsed or seriously damaged enormous buildings, houses, and infrastructure. The field investigations, observations, and analyses indicate that a large number of casualties and tremendous economic losses were caused not only by the collapse and damage of houses with poor seismic performance, but also by the amplification effects of site conditions, topography, and the thickness of loess deposits on ground motion. The morphological characteristics of slopes determine the predominant frequency, which may amplify the incident seismic wave with the same or similar frequency range, and thus, increase the slope dynamic response and even trigger landslides. The field investigations of the Wenchuan earthquake indicate that the amplification effects of site conditions and topography on ground motion were very obvious in loess regions. In this paper, we chose a typical loess site for temporary strong motion array and numerical analysis, and aim to explore the dynamic response characteristics of the loess slope. The results reveal the following:(1) The minimum predominant frequency occurred at the slope crest. The highest peak ground acceleration(PGA) amplification coefficient reached 1.98 at the slope crest. The phenomenon of the low predominant frequency corresponding to the high PGA amplification at the slope top may be related to the ratio of slope height to the wavelength of incident wave. The PGA amplification was maximum when the ratio was 0.2.(2) The amplification effects are more predominant with increase in slope gradient. The predominant period amplification coefficient of response spectrum at the slope top may reach 5. The numerical results are basically consistent with the ground motion observations, and thus, they have high scientific and practical significances for engineering seismic fortification in loess regions.
引文
[1] 王兰民,石玉成,刘旭,等.黄土动力学[M].北京:地震出版社,2003:306-323.WANG Lanmin,SHI Yucheng,LIU Xu,et al.Loess Dynamics[M].Beijing:Seismological Press,2003:306-323.
    [2] 王文沛,殷跃平,李滨,等.不同坡角斜坡动力响应频谱特征研究[J].岩石力学与工程学报,2015,34(1):121-127.WANG Wenpei,YIN Yueping,LI Bin,et al.Spectral Characteristics of Dynamic Response of Slope with Different Angles of Inclination[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(1):121-127.
    [3] 姚凯,卢大伟,刘旭宙,等.利用汶川余震流动观测资料探讨地形对峰值加速度的影响[J].西北地震学报,2009,31(1):46-50.YAO Kai,LU Dawei,LIU Xuzhou,et al.Using Observational Data from the Aftershocks of Wenchuan Great Earthquake to Study the Influence of Geography on Peak Ground Acceleration[J].Northwestern Seismological Journal,2009,31(1):46-50.
    [4] BORCHERDT R D.Effects of Local Geology on Ground Motion Near San Francisco Bay[J].Bull Seism Soc Am,1970,60:29-61.
    [5] ANDREWS D J.Objective Determination of Source Parameters and Similarity of Earthquakes of Different Size[M]//DAS S,BOATWRIGHT J,SCHOLZ C H,Eds.Earthquake Source Mechanics.American Geophysical Union,Washington,D.C.,1986:259-268.
    [6] ASHFORD S A,SITAR N,LYSMER J,et al.Topographic Effects on the Seismic Response of Steep Slopes[J].Bulletin of the Seismological Society of America,1997,87:701-709.
    [7] KUNAR R R,BERESFORD P J,CUNDALL P A.A Tested Soil-Structure Model for Surface Interaction[R].India:Rookee University,1977.
    [8] 于海英,江汶乡,解全才,等.近场数字强震仪记录误差分析与零线校正方法[J].地震工程与工程振动,2009,29(6):1-12.YU Haiying,JIANG Wenxiang,XIE Quancai,et al.Baseline Correction of Digital Strong-motion Records in Near-field[J].Earthquake Engineering and Engineering Dynamics,2009,29(6):1-12.
    [9] 中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB50011-2010[S].北京:中国建筑工业出版社,2010:31-41.Ministry of Housing and Urban-Rural Development of the People’s Republic of China.Code for Seismic Design of Buildings:GB50011-2010[S].Beijing:Building Industry Press of China,2010:31-41.
    [10] 祁生文,伍法权,孙进忠.边坡动力响应规律研究[J].中国科学E辑:技术科学,2003,33(增刊):28-40.QI Shengwen,WU Faquan,SUN Jinzhong.Characteristics of Dynamic Response of Slope[J].Science in China Ser.E:Technological Sciences,2003,33(Supp):28-40.
    [11] KUHLEMEYER R L,LYSMER J.Finite Element Method Accuracy for Wave Propagation Problems[J].J Soil Mech & Foundations Div,1973,99(5):421-427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700