用户名: 密码: 验证码:
南极布兰斯菲尔德海峡正压潮数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:NUMERICAL SIMULATION OF BAROTROPIC TIDE IN THE BRANSFIELD STRAIT, ANTARCTICA
  • 作者:周相乾 ; 胡松 ; 张瑜
  • 英文作者:Zhou Xiangqian;Hu Song;Zhang Yu;Marine Ecosystem & Environmental Laboratory, Shanghai Ocean University;National Fisheries Engineering & Technology Research Center;
  • 关键词:布兰斯菲尔德海峡 ; 潮汐数值模拟 ; 潮能分析 ; 有限体积海洋模型(FVCOM)
  • 英文关键词:Bransfield Strait;;tidal numerical model;;tidal energy analysis;;finite volume community ocean model (FVCOM)
  • 中文刊名:JDYZ
  • 英文刊名:Chinese Journal of Polar Research
  • 机构:上海海洋大学海洋生态系统与环境实验室;国家渔业工程技术研究中心;
  • 出版日期:2019-03-15
  • 出版单位:极地研究
  • 年:2019
  • 期:v.31
  • 基金:农业部项目(D-8002-15-8003-2);; 国家自然科学基金(41706210);; 上海海洋大学博士科研启动基金(A2-0203-00-100344)资助
  • 语种:中文;
  • 页:JDYZ201901006
  • 页数:13
  • CN:01
  • ISSN:31-1744/P
  • 分类号:60-72
摘要
本文利用高分辨率的有限体积海洋模型(FVCOM)模拟了南极布兰斯菲尔德海峡附近海区的M_2、S_2、K_1与O_1四个主要分潮,模拟结果与验潮站资料基本符合。将模拟结果计算并利用潮汐调和常数绘制了同潮图,该海峡附近海域的潮汐类型为混合半日潮,全日潮在西南部及南极半岛附近海域较东北部南设得兰群岛附近海域比重偏大。通过分别计算4个分潮的潮能通量,发现M_2分潮潮能来自海峡东部的太平洋与威德尔海, S_2、K_1与O_1分潮潮能来自大西洋与威德尔海。在布兰斯菲尔德海峡区域4个分潮共耗散90.6 MW,其中O_1分潮耗散最大,约占到总潮能耗散的49.09%;由威德尔海潮能在进入布兰斯菲尔德海峡之前,在南极海峡区域4个分潮共耗散278.87 MW,其中S_2分潮耗散最大约占到总潮能耗散的39.09%。
        In this paper, the high resolution finite volume community ocean model (FVCOM) was used to simulate the four main tides of M_2, S_2, K_1, and O_1 in the Bransfield Strait, Antarctica. The co-tide chart was plotted using the tide harmonic constant. Using these data, the tidal form was calculated, which in this sea area is a mixed semi-diurnal tide. The diurnal tide in this area near the southwestern part of the Antarctic Peninsula was greater than that of the northeast around the South Shetland Island. By calculating the four dominant tidal fluxes respectively, we found that the tidal fluxes of M_2 were from the Pacific Ocean and Weddell Sea.The tidal fluxes of S_2, K_1, and O_1 were from the Atlantic Ocean and Weddell Sea. In the Bransfield Strait area, there was 90.6 MW of total dissipated energy for the four tides, with the largest tidal dissipation occurring in O_1, accounting for approximately 49.09% of the total tidal energy dissipated. Before the Weddell tidal energy fluxes entered the Bransfield Strait, Antarctica, the four tides dissipated a total of 278.87 MW. The S_2 sub-tidal accounted for approximately 39.09% of the total energy dissipation.
引文
1 NOWLIN W D,BOTTERO J S,PILLSBURY R D.Observations of the principal tidal currents at Drake Passage[J].Journal of Geophysical Research,1982,87(8):5752-5770.DOI:10.1029/jc087ic08p05752.
    2 陈丹红.南极旅游业的发展与中国应采取的对策的思考[J].极地研究,2012,24(1):70-76.
    3 GORDON A L,NOWLIN W D.The basin waters of the Bransfield Strait[J].Journal of Physical Oceanography,1978,8(2):258-264.
    4 TOKARCZYK R.Classification of water masses in the Bransfield Strait and southern part of the Drake Passage using a method of statistical multidimensional analysis[J].Polish Polar Research,1987,08(4):333-366.
    5 WHITWORTH T,NOWLIN W D,ORSI A H,et al.Weddell Sea shelf water in the Bransfield Strait and Weddell-Scotia confluence[J].Deep Sea Research Part I:Oceanographic Research Papers,1994,41(4):629-641.DOI:10.1016/0967-0637(94)90046-9.
    6 NILLER P P,AMOS A,HU J H.Water masses and 200 m relative geostrophic circulation in the western Bransfield Strait region[J].Deep Sea Research Part A Oceanographic Research Papers,1991,38(8):943-959.DOI:10.1016/0198-0149(91)90091-s.
    7 LóPEZ O,GARCíA M A,GOMIS D,et al.Hydrographic and hydrodynamic characteristics of the eastern basin of the Bransfield Strait(Antarctica)[J].Deep Sea Research Part I:Oceanographic Research Papers,1999,46(10):1755-1778.DOI:10.1016/s0967-0637(99)00017-5.
    8 GOMIS D,GARCíA M A,LóPEZ O,et al.Quasi-geostrophic 3D circulation and mass transport in the western Bransfield Strait during Austral summer 1995/96[J].Deep Sea Research Part II:Topical Studies in Oceanography,2002,49(4):603-621.DOI:10.1016/s0967-0645(01)00114-x.
    9 GORDON A L,MENSCH M,ZHAOQIAN D,et al.Deep and bottom water of the Bransfield Strait eastern and central basins[J].Journal of Geophysical Research:Oceans,2000,105(5):11337-11346.DOI:10.1029/2000jc900030.
    10 ZHOU M,NIILER P P,HU J H.Surface currents in the Bransfield and Gerlache Straits,Antarctica[J].Deep Sea Research Part I:Oceanographic Research Papers,2002,49(2):267-280.DOI:10.1016/s0967-0637(01)00062-0.
    11 ZHOU M,NIILER P P,ZHU Y,et al.The western boundary current in the Bransfield Strait,Antarctica[J].Deep Sea Research Part I:Oceanographic Research Papers,2006,53(7):1244-1252.DOI:10.1016/j.dsr.2006.04.003.
    12 SAVIDGE D K,AMFT J A.Circulation on the West Antarctic Peninsula derived from 6 years of shipboard ADCP transects[J].Deep Sea Research Part I:Oceanographic Research Papers,2009,56(10):1633-1655.DOI:10.1016/j.dsr.2009.05.011.
    13 MUNK W,WUNSCH C.Abyssal recipes II:energetics of tidal and wind mixing[J].Deep Sea Research Part I:Oceanographic Research Papers,1998,45(12):1977-2010.DOI:10.1016/s0967-0637(98)00070-3.
    14 SPIRIDONOV V A.A scenario of the Late-Pleistocene-Holocene changes in the distributional range of Antarctic Krill(Euphausia superba)[J].Marine Ecology,1996,17(1):519-541.DOI:10.1111/j.1439-0485.1996.tb00525.x.
    15 ATKINSON A,SIEGEL V,PAKHOMOV E,et al.Long-term decline in krill stock and increase in salps within the Southern Ocean[J].Nature,2004,432(7013):100-103.DOI:10.1038/nature02996.
    16 BERNARD K S,STEINBERG D K.Krill biomass and aggregation structure in relation to tidal cycle in a penguin foraging region off the Western Antarctic Peninsula[J].ICES Journal of Marine Science,2013,70(4):834-849.DOI:10.1093/icesjms/fst088.
    17 LENN Y D,CHERESKIN T K,GLATTS R C.Seasonal to tidal variability in currents,stratification and acoustic backscatter in an Antarctic ecosystem at Deception Island[J].Deep Sea Research Part II:Topical Studies in Oceanography,2003,50(10):1665-1683.DOI:10.1016/s0967-0645(03)00085-7.
    18 LóPEZ O,GARCíA M A,ARCILLA A S.Tidal and residual currents in the Bransfield Strait,Antarctica[J].Annales Geophysicae,1994,12(9):887-902.DOI:10.1007/s00585-994-0887-5.
    19 ROBAKIEWICZ M,RAKUSA-SUSZCZEWSKI S.Application of 3D circulation model to Admiralty Bay,King George Island,Antarctica[J].Polish Polar Research,1999,20(1):43-58.
    20 VIDAL J,BERROCOSO M,JIGENA B.Hydrodynamic modeling of Port Foster,Deception Island(Antarctica)[J].Nonlinear and Complex Dynamics,2011:193-203.DOI:10.1007/978-1-4614-0231-2_16.
    21 JIGENA-ANTELO B J,VIDAL J,BERROCOSO M.Determination of the tide constituents at Livingston and Deception Islands(South Shetland Islands,Antarctica),using annual time series[J].Dyna,2015,82(191):209-218.
    22孙洪亮.南极长城站潮汐观测与分析[J].南极研究,1990,2(1):66-72.
    23张保军,王泽民,安家春,等.南极长城站验潮站数据处理和潮汐特点初步分析[J].极地研究,2016,28(4):498-504.
    24 PADMAN L,FRICKER H A,COLEMAN R,et al.A new tide model for the Antarctic ice shelves and seas[J].Annals of Glaciology,2002,34:247-254.DOI:10.3189/172756402781817752.
    25 KING M A,PADMAN L,NICHOLLS K,et al.Ocean tides in the Weddell Sea:New observations on the Filchner-Ronne and Larsen Cice shelves and model validation[J].Journal of Geophysical Research,2011,116(6).DOI:10.1029/2011jc007463.
    26 ROSIER S H R,GREEN J A M,SCOURSE J D,et al.Modeling Antarctic tides in response to ice shelf thinning and retreat[J].Journal of Geophysical Research:Oceans,2014,119(1):87-97.DOI:10.1002/2013jc009240.
    27 D’ONOFRIO E E,DRAGANI W C,SPERONI J O,et al.Propagation and amplification of tide at the northeastern coast of the Antarctic peninsula:an observational study[J].Polar Geoscience,2003,16:53-60.
    28 DRAGANI W C,DRABBLE M R,D'ONOFRIO E E,et al.Propagation and amplification of tide at the Bransfield and Gerlache Straits,northwestern Antarctic Peninsula[J].Polar Geoscience,2004,17:156-170.
    29 DRAGANI W C,D’ONOFRIO E E,SPERONI J O,et al.A numerical study of the ocean circulation around the northern Antarctic Peninsula:Barotropic response to tidal forcing[J].Polar Geoscience,2005,18:83-100.
    30 CHEN C,LIU H,BEARDSLEY R C,et al.An unstructured grid,finite-volume,three-dimensional,primitive equations ocean model:Application to coastal ocean and estuaries[J].Journal of Atmospheric and Oceanic Technology,2003,20(1):159-186.
    31 CHEN C,GAO G,QI J,et al.A new high-resolution unstructured grid finite volume Arctic Ocean model(AO-FVCOM):An application for tidal studies[J].Journal of Geophysical Research,2009,114(8).DOI:10.1029/2008JC004941.
    32 CHEN C,GAO G,ZHANG Y,et al.Circulation in the Arctic Ocean:Results from a high-resolution coupled ice-sea nested GlobalFVCOM and Arctic-FVCOM system[J].Progress in Oceanography,2016,141:60-80.DOI:10.1016/j.pocean.2015.12.002.
    33 WESSEL P,SMITH W H F.A global,self-consistent,hierarchical,high-resolution shoreline database[J].Journal of Geophysical Research:Solid Earth,1996,101(4):8741-8743.DOI:10.1029/96jb00104.
    34 EGBERT G D,EROFEEVA S Y.Efficient inverse modeling of barotropic ocean tides[J].Journal of Atmospheric&Oceanic Technology,2002,19(2):183-204.
    35黄祖珂,黄磊.潮汐原理与计算[M].青岛:中国海洋大学出版社,2005.
    36 PAWLOWICZ R,BEARDSLEY B,LENTZ S.Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J].Computers&Geosciences,2002,28(8):929-937.DOI:10.1016/s0098-3004(02)00013-4.
    37 OREIRO F A,D'ONOFRIO E,GRISMEYER W,et al.Comparison of tide model outputs for the northern region of the Antarctic Peninsula using satellite altimeters and tide gauge data[J].Polar Science,2014,8(1):10-23.DOI:10.1016/j.polar.2013.12.001.
    38 PUGH D T.Tides,surges and mean sea-level(reprinted with corrections)[M].Chichester,UK:John Wiley&Sons Ltd,1996.
    39 REEVE D,CHADWICK A,FLEMING C.Coastal engineering:processes,theory and design practice[M].London,UK:CRC Press,2012.
    40 HARARI J,DE CAMARGO R.Numerical simulation of the tidal propagation in the coastal region of Santos(Brazil,24°S 46°W)[J].Continental Shelf Research,2003(16):1597-1613.DOI:10.1016/s0278-4343(03)00143-2.
    41 ROBERTSON R,BECKMANN A,HELLMER H.M-2 tidal dynamics in the Ross Sea[J].Antarctic Science,2003,15(1):41-46.
    42 WALLACE M I,MEREDITH M P,BRANDON M A,et al.On the characteristics of internal tides and coastal upwelling behaviour in Marguerite Bay,west Antarctic Peninsula[J].Deep Sea Research Part II:Topical Studies in Oceanography,2008,55(18):2023-2040.DOI:10.1016/j.dsr2.2008.04.033.
    43 GARCíA M A,CASTRO C G,RíOS A F,et al.Water masses and distribution of physico-chemical properties in the Western Bransfield Strait and Gerlache Strait during Austral summer 1995/96[J].Deep Sea Research Part II:Topical Studies in Oceanography,2002,49(4-5):585-602.
    44 NILLER P P,AMOS A,HU J H.Water masses and 200 m relative geostrophic circulation in the western Bransfield Strait region[J].Deep Sea Research Part A Oceanographic Research Papers,1991,38(8):943-959.DOI:10.1016/0198-0149(91)90091-s.
    45 LOEB V,HOFMANN E E,KLINCK J M,et al.Hydrographic control of the marine ecosystem in the South Shetland-Elephant Island and Bransfield Strait region[J].Deep Sea Research Part II:Topical Studies in Oceanography,2010,57(7):519-542.DOI:10.1016/j.dsr2.2009.10.004.
    46 SCHMIDT K,ATKINSON A,POND D W,et al.Feeding and overwintering of Antarctic krill across its major habitats:The role of sea ice cover,water depth,and phytoplankton abundance[J].Limnology and Oceanography,2014,59(1):17-36.DOI:10.4319/lo.2014.59.1.0017.
    47 BIANCHI F,BOLDRIN A,CIOCE F,et al.Phytoplankton distribution in relation to sea ice,hydrography and nutrients in the northwestern Weddell Sea in early spring 1988 during EPOS[J].Weddell Sea Ecology,1992:225-235.DOI:10.1007/978-3-642-77595-6_26.
    48 DEPPELER S L,DAVIDSON A T.Southern Ocean phytoplankton in a changing climate[J].Frontiers in Marine Science,2017,4(40):1-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700