用户名: 密码: 验证码:
冷藏过程中温州蜜柑角质层组分变化及其对指状青霉生长的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Change of Cuticle Components in Mature Satsuma Mandarin Fruits(Citrus unshiu) during Cold Storage and Their Effects on the Growth of Penicillium digitatum
  • 作者:张静 ; 王蓉蓉 ; 单杨 ; 潘浪 ; 付复华 ; 丁胜华
  • 英文作者:ZHANG Jing;WANG Rongrong;SHAN Yang;PAN Lang;FU Fuhua;DING Shenghua;Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences;Longping Branch Graduate School, Hunan University;College of Food Science and Technology, Hunan Agricultural University;Hunan Provincial Key Laboratory for Fruits & Vegetables Storage,Processing and Quality Safety;
  • 关键词:温州蜜柑 ; 冷藏 ; 角质层 ; 指状青霉
  • 英文关键词:Satsuma mandarin fruit;;cold storage;;cuticle;;Penicillium digitatum
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:湖南省农业科学院农产品加工研究所;湖南大学研究生院隆平分院;湖南农业大学食品科学技术学院;果蔬贮藏加工与质量安全湖南省重点实验室;
  • 出版日期:2017-12-27 13:35
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.590
  • 基金:国家自然科学基金青年科学基金项目(31501543);; 湖南省自然科学基金项目(2016JJ6077);; 公益性行业(农业)科研专项(201303076);; 农业科研杰出人才及其创新团队项目(农办人[2012]64号);; “万人计划”领军人才项目(财教[2014]412号)
  • 语种:中文;
  • 页:SPKX201901034
  • 页数:7
  • CN:01
  • ISSN:11-2206/TS
  • 分类号:241-247
摘要
角质层在果实采后贮藏中具有多重重要的生理功能。本实验以温州蜜柑(Citrus unshiu)为材料,对其冷藏过程中角质层的变化特征及其对指状青霉(Penicillium digitatum)孢子萌发和菌丝生长的影响进行了分析。结果表明:温州蜜柑冷藏过程中蜡质、角质含量整体上呈先上升后下降的趋势,其中角质含量的变化幅度最大;脂肪酸是外蜡中含量最丰富的蜡质组分,在冷藏前10 d,脂肪酸含量从0.73μg/cm~2增加到3.09μg/cm~2,之后下降至0.64μg/cm~2(40 d);萜类物质主要存在于内蜡中,内蜡中萜类物质含量在冷藏过程中呈下降-上升的反复波动状态;角质单体成分主要为肉桂酸和十六碳二酸,冷藏时,肉桂酸含量逐渐下降,在第40天时最低,为13.90μg/cm~2,十六碳二酸含量先增加到17.90μg/cm~2(10 d),然后下降到6.60μg/cm~2(40 d);体外实验表明,角质能显著抑制指状青霉孢子萌发,而内蜡能显著抑制菌丝生长(P<0.05)。这些结果揭示了贮藏过程中角质层变化的生化基础及角质层各组分对指状青霉的影响,为提高温州蜜柑柑橘品种的耐贮性提供了参考。
        The cuticle plays multiple important roles in the postharvest physiology of fruits. In this study, we examined the change of cuticle components during the postharvest cold storage of Satsuma mandarin(Citrus unshiu) and we also investigated their effects on the spore germination and mycelial growth of Penicillium digitatum. The results showed that the amounts of cutin and wax, the main components of cuticle, increased firstly and then decreased during cold storage and the amount of cutin changed more significantly. Free fatty acids were the most abundant wax components in the epicuticular wax. The amount of free fatty acids increased from 0.73 to 3.09 μg/cm~2 over the first ten days of storage and then it decreased to 0.64 μg/cm~2 on the 40~(th) day. The most abundant wax components in the intracuticular wax were terpenoids and their content was fluctuated during the storage process. Cutin was mainly composed of cinnamic acid and hexadecanedioic acid. The content of cinnamic acid decreased gradually and reached the lowest level of 13.90 μg/cm~2 on the 40~(th) day, while the content of hexadecanedioic acid increased to 17.90 μg/cm~2 on the 10~(th) day and then decreased to 6.60 μg/cm~2 on the 40~(th) day. Results of in vitro tests showed that the spore germination could be inhibited by cutin and mycelial growth of Penicillium digitatum could be inhibited by intracuticular wax(P < 0.05). These findings reveal the biochemical basis of the change in the cuticle during storage and the effects of its components on the growth of Penicillium digitatum, which will provide an important basis for improving the storability of Satsuma mandarin.
引文
[1]LARA I,BELGE B,GOULAO L F.The fruit cuticle as a modulator of postharvest quality[J].Postharvest Biology and Technology,2014,87:103-112.DOI:10.1016/j.postharvbio.2013.08.012.
    [2]YEATS T H,ROSE J K.The formation and function of plant cuticles[J].Plant Physiology,2013,163(1):5-20.DOI:10.1104/pp.113.22 2737.
    [3]YEATS T H,BUDA G J,WANG Z H,et al.The fruit cuticles of wild tomato species exhibit architectural and chemical diversity,providing a new model for studying the evolution of cuticle function[J].The Plant Journal,2012,69(4):655-666.DOI:10.1111/j.1365-313X.2011.04820.x.
    [4]KOCH K,ENSIKAT H J.The hydrophobic coatings of plant surfaces:epicuticular wax crystals and their morphologies,crystallinity and molecular self-assembly[J].Micron,2008,39(7):759-772.DOI:10.1016/j.micron.2007.11.010.
    [5]李宏键,刘志,王宏,等.苹果果实组织结构与果实失重率和硬度变化的关系[J].果树学报,2013(5):753-758.DOI:10.13925/j.cnki.gsxb.2013.05.028.
    [6]郜海燕,杨帅,陈杭君,等.蓝莓外表皮蜡质及其对果实软化的影响[J].中国食品学报,2014,14(2):102-108.DOI:10.16429/j.1009-7848.2014.02.015.
    [7]DONG Xiaoqing,RAO Jingping,HUBER D J,et al.Wax composition of‘Red Fuji’fruit during development and during storage after1-methylcyclopropene treatment[J].Horticulture,Environment,and Biotechnology,2012,53(4):288-297.DOI:10.1007/s135 80-012-0036-0.
    [8]LIU Dechun,LI Yang,ZHENG Qiong,et al.Analysis of cuticular wax constituents and genes that contribute to the formation of‘glossy Newhall’,a spontaneous bud mutant from the wild-type a navel‘Newhall’orange[J].Plant Molecular Biology,2015,88(6):573-590.DOI:10.1007/s11103-015-0343-9.
    [9]WANG Jinqiu,LI Sun,LI Xie,et al.Regulation of cuticle formation during fruit development and ripening in‘Newhall’navel orange(Citrus sinensis Osbeck)revealed by transcriptomic and metabolomic profiling[J].Plant Science,2016,243:131-144.DOI:10.1016/j.plantsci.2015.12.010.
    [10]LIU D C,ZENG Q,JI Q X,et al.A comparison of the ultrastructure and composition of fruits cuticular wax from the wild-type‘Newhall’navel orange(Citrus sinensis[L]Osbeck cv.Newhall)and its glossy mutant[J].Plant Cell Reports,2012,31(12):2239-2246.DOI:10.1007/s00299-012-133 3-x.
    [11]STOCKWELL V,HANCHEY P.Effect of cuticle treatments on infection of Phaseolus vulgaris by Rhizoctonia solani[J].Journal of Phytopathology,1985,114:6-12.DOI:10.1111/j.1439-0434.1985.tb04332.x.
    [12]LI Yongcai,YIN Yan,CHEN Songjiang,et al.Chemical composition of cuticular waxes during fruit development of Pingguoli pear and their potential role on early events of Alternaria infection[J].Functional Plant Biology,2014,41(3):313-320.DOI:10.1071/FP13184.
    [13]MARTIN J T,BATT R F,BURCHILL R T.Defence mechanism of plants against fungi:fungistatic properties of apple leaf wax[J].Nature,1957,180:796-797.
    [14]INYANG E N,BUTT T M,BECKETT A,et al.The effect of crucifer epicuticular waxes and leaf extracts on the germination and virulence of Metarhizium anisopliae conidia[J].Mycological Research,1999,103(4):419-426.DOI:10.1017/S0953756298007333.
    [15]PODILA G K,ROGERS L M,KOLATTUKUDY P E.Chemical signals from avocado surface wax trigger germination and appressorium formation in Colletotrichum gloeosporioides[J].Plant Physiology,1993,103(1):267-272.
    [16]国家统计局.2017中国统计年鉴[M/OL].北京:中国统计出版社,2017.http://www.stats.gov.cn/tjsj/ndsj/2017/indexch.htm.
    [17]刘起丽,张建新,徐瑞富,等.柑橘皮内生细菌分离及柑橘青霉病菌拮抗菌筛选研究[J].中国农学通报,2011,27(28):235-239.
    [18]张静,丁胜华,谢秋涛,等.温州蜜柑和冰糖橙果实表面角质层组分及微观结构差异分析[J].食品科学,2018,39(7):131-138.DOI:10.7506/spkx1002-6630-201807020.
    [19]PACCHIANO R A,SOHN W,CHLANDA V L,et al.Isolation and spectral characterization of plant-cuticle polyesters[J].Journal of Agricultural and Food Chemistry,1993,41(1):78-83.DOI:10.1021/jf00025a017.
    [20]PARSONS E P,POPOPVSKY S,LOHREY G T,et al.Fruit cuticle lipid composition and water loss in a diverse collection of pepper(Capsicum)[J].Physiologia Plantarum,2013,149(2):160-174.DOI:10.1111/ppl.12035.
    [21]CAJUSTE J F,GONZáLEZ-CANDELAS L,VEYRAT A,et al.Epicuticular wax content and morphology as related to ethylene and storage performance of‘Navelate’orange fruit[J].Postharvest Biology and Technology,2010,55(1):29-35.DOI:10.1016/j.postharvbio.2009.07.005.
    [22]WANG Jinqiu,HAO Haohao,LIU Runsheng,et al.Comparative analysis of surface wax in mature fruits between Satsuma mandarin(Citrus unshiu)and‘Newhall’navel orange(Citrus sinensis)from the perspective of crystal morphology,chemical composition and key gene expression[J].Food Chemistry,2014,153(15):177-185.DOI:10.1016/j.foodchem.2013.12.021.
    [23]SALA J M.Content,chemical composition and morphology of epicuticular wax of Fortune mandarin fruits in relation to peel pitting[J].Journal of the Science of Food and Agriculture,2000,80(13):1887-1894.DOI:10.1002/1097-0010(200010).
    [24]VERAVERBEKE E A,LAMMERTYN J,SAEVELS S,et al.Changes in chemical wax composition of three different apple(Malus domestica Borkh.)cultivars during storage[J].Postharvest Biology and Technology,2001,23(3):197-208.DOI:10.1016/S0925-5214(01)00128-4.
    [25]RADLER F,HORN D H S.The composition of grape cuticle wax[J].Australian Journal of Chemistry,1965,18(7):1059-1069.DOI:10.1071/CH9651059.
    [26]TUSBAKI S,OZAKI Y,YONEMORI K,et al.Mechanical properties of fruit-cuticular membranes isolated from 27 cultivars of Diospyros kaki Thunb[J].Food Chemistry,2012,132(4):2135-2139.DOI:10.1016/j.foodchem.2011.12.039.
    [27]ISAACSON T,KOSMA D K,MATAS A J,et al.Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties,but not transpirational water loss[J].The Plant Journal,2009,609(2):363-377.DOI:10.1111/j.1365-313X.2009.03969.x.
    [28]VOGG G,FISCHER S,LEIDE J,et al.Tomato fruit cuticular waxes and their effects on transpiration barrier properties:functional characterization of a mutant deficient in avery-long-chain fatty acid beta-ketoacyl-CoA synthase[J].Journal of Experimental Botany,2004,55(401):1401-1410.DOI:10.1093/jxb/erh149.
    [29]BUSCHHAUS C,JETTER R.Composition differences between epicuticular and intracuticular wax substructures:how do plants seal their epidermal surfaces?[J].Journal of Experimental Botany,2011,62(3):841-853.DOI:10.1093/jxb/erq366.
    [30]YIN Yan,BI Yang,CHEN Songjiang,et al.Chemical composition and antifungal activity of cuticular wax isolated from Asian pear fruit(cv.Pingguoli)[J].Scientia Horticulturae,2011,129(4):577-582.DOI:10.1016/j.scienta.2011.04.028.
    [31]PESCHEL S,FRANKE R,SCHREIBER L,et al.Composition of the cuticle of developing sweet cherry fruit[J].Phytochemistry,2007,68(7):1017-1025.DOI:10.1016/j.phytochem.2007.01.008.
    [32]CROTEAU R,FAGERSON I S.The chemical composition of the cuticular wax of cranberry[J].Phytochemistry,1971,10(12):3239-3245.DOI:10.1016/S0031-9422(00)97379-5.
    [33]MARGA F,PESACRETA T C,HASENSTEIN K G.Biochemical analysis of elastic and rigid cuticles of Cirsium horridulu[J].Planta,2001,213:841-848.DOI:10.1007/s004250100576.
    [34]?AZNIEWSKA J,MACIOSZEK V K,KONONOWICZ A K.Plantfungus interface:the role of surface structures in plant resistance and susceptibility to pathogenic fungi[J].Physiological and Molecular Plant Pathology,2012,78:24-30.DOI:10.1016/j.pmpp.2012.01.004.
    [35]NAZIRI E,MANTZOURIDOU F,TSIMIDOU M Z.Enhanced squalene production by wild-type Saccharomyces cerevisiae strains using safe chemical means[J].Journal of Agricultural and Food Chemistry,2011,59(18):9980-9989.DOI:10.1021/jf201328a.
    [36]LIU Pu,LUO Li,GUO Junhong,et al.Farnesol induces apoptosis and oxidative stress in the fungal pathogen Penicillium expansum[J].Mycologia,2010,102(2):311-318.DOI:10.3852/09-176.
    [37]LI Y C,AN L Z,GE Y H,et al.Detection and isolation of preformed antifungal compounds from the peel of Pyrusbretschneideri Rehd.cv.Pingguoli at different stages of maturity[J].Journal of Phytopathology,2008,156:115-119.DOI:10.1111/j.1439-0434.2007.01340.x.
    [38]GILBERT R D,JOHNSON A M,DEAN R A.Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea[J].Physiological and Molecular Plant Pathology,1996,48(5):335-346.DOI:10.1006/pmpp.1996.0027.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700