用户名: 密码: 验证码:
两种桑科植物叶片光合及光呼吸对模拟干旱的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Responses of Leaf Photosynthesis and Photorespiration to the Simulated Drought by Two Moraceae Plants
  • 作者:李环 ; 吴沿友
  • 英文作者:LI Huan;WU Yanyou;State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:聚乙二醇 ; 构树 ; 桑树 ; 干旱胁迫 ; 光合参数 ; 光呼吸
  • 英文关键词:polyethylene glycol;;Broussonetia papyrifera;;Morus alba;;drought stress;;photosynthetic parameters;;photorespiration
  • 中文刊名:DZDQ
  • 英文刊名:Earth and Environment
  • 机构:中国科学院地球化学研究所环境地球化学国家重点实验室;中国科学院大学地球科学学院;
  • 出版日期:2019-01-31 17:25
  • 出版单位:地球与环境
  • 年:2019
  • 期:v.47;No.328
  • 基金:贵州省自然科学基金项目(黔科合基础[2018]1175);; 国家重点研发计划专题计划项目(2016YFC0502602);; 国家自然科学基金项目(U1612441)
  • 语种:中文;
  • 页:DZDQ201902004
  • 页数:10
  • CN:02
  • ISSN:52-1139/P
  • 分类号:32-41
摘要
采用150 g/L的聚乙二醇(Polyethylene glycol,PEG)模拟干旱胁迫,研究两种桑科植物(构树和桑树)的叶片光合及光呼吸特征对干旱胁迫的响应。对植物培养液的相关化学参数以及叶片的光合参数进行测定,结果表明:干旱对构树根系吸水能力的影响小于桑树的;构树以中光合-低蒸腾-高水分利用率的模式适应干旱环境,桑树以低光合-低蒸腾-高水分利用率的模式来应对干旱环境;在模拟干旱环境下,构树以稳定的羧化效率-高光呼吸速率-高光呼吸利用份额来适应外界胁迫,而桑树以低羧化效率-低光呼吸速率-低光呼吸利用份额来应对外界胁迫。构树表现出对外界干旱胁迫更好的适应性,这种适应机制可能与其较强的光呼吸作用及其碳酸氢根离子利用能力有关。这种"以碳换水"的机制可能是喀斯特适生植物适应岩溶干旱的又一个重要机制。
        The responses of photosynthetic and photorespiration characteristics of two plants of Moraceae( Broussonetia papyrifera and Morus alba.) to the drought stress were studied by applying 150 g/L polyethylene glycol( PEG) to simulate the arid environment. The relevant chemical parameters of the culture medium and the photosynthetic parameters of leaves were measured. The arid environment was found to have less effect on the water absorption capacity of Broussonetia papyrifera than that of Morus alba. The Broussonetia papyrifera adapted to the arid environment by moderate photosynthesis,low transpiration and high water use efficiency,while the Morus alba by low photosynthetic,low transpiration and high water use efficiency. In the simulated drought environment,the Broussonetia papyrifera adapted to external stress by stable carboxylation efficiency,high photosynthetic capacity,high photosynthetic capacity utilization share,while the Morus alba by low carboxylation efficiency,low light respiration rate and low light respiration utilization share. The mulberry tree showed a higher adaptive capacity to the external drought stress than Morus alba. This adaptive mechanism of Broussonetia papyrifera may be related to its higher photorespiration rate and the ability of utilizing bicarbonate ions. The"consuming carbon for water"mechanism may be an important mechanism for plants to adapt for the karst drought.
引文
[1]王世杰,刘再华,倪健,等.中国南方喀斯特地区碳循环研究进展[J].地球与环境,2017,45(1):2-9.
    [2]方精云,朴世龙,贺金生,等.近20年来中国植被活动在增强[J].中国科学(C辑:生命科学),2003,6.
    [3]朴世龙,方精云. 1982-1999年我国陆地植被活动对气候变化响应的季节差异[J].地理学报,2003,58(1):119-125.
    [4]苏维词,杨汉奎.贵州岩溶区生态环境脆弱性类型的初步划分[J].环境科学研究,1994,7(6):35-41.
    [5] Li F L,Bao W K,Wu N. Effects of water stress on growth,dry matter allocation and water-use efficiency of a leguminous species,Sophpra davidii[J]. Agroforestry Systems,2009,77(3):193-201.
    [6]安玉艳,梁宗锁,郝文芳.杠柳幼苗对不同强度干旱胁迫的生长与生理响应[J].生态学报,2011,31(3):716-725.
    [7] Wu Y Y,Liu C Q,Li P P,et al. Photosynthetic characteristics involved in adaptability to Karst soil and alien invasion of paper mulberry(Broussontia papyrifera)(L.)Vent in comparison with mulberry(Morus alba L.)[J]. Photosynthetica,2009,47(1):155-160.
    [8] Ni J,Luo D H,Xia J,et al. Vegetation in karst terrain of southwestern China allocates more biomass to roots[J]. Solid Earth,2015,6(3):799-810.
    [9] Smith S D,Human T E,Zitzer S F,et al,Elevated CO2increases productivity and invasive species success in and arid ecosystem[J]. Nature,2000,408(6808):79-82.
    [10]李义博,宋贺,周莉,等. C4植物玉米的光合-光响应曲线模拟研究[J].植物生态学报,2017,41(12):1289-1300.
    [11]云建英,杨甲定,赵哈林.干旱和高温对植物光合作用的影响机制研究进展[J].西北植物学报,2006,26(3):641-648.
    [12]吴沿友.喀斯特适生植物固碳增汇策略[J].中国岩溶,2011,30(4):461-465.
    [13]邓云鹏,雷静品,潘磊,等.不同种源栓皮栎光响应曲线的模型拟合及参数比较[J].生态学杂志,2016,35(2):387-394.
    [14]叶子飘.光响应模型在超级杂交稻组合-Ⅱ优明86中的应用[J].生态学杂志,2007,26(8):1323-1326.
    [15]李力,张祥星,郑睿,等.夏玉米光合特性及光响应曲线的拟合[J].植物生态学报,2016,40(12):1310-1318.
    [16]夏宣宣,张淑勇,张光灿,等.黄土丘陵区土壤水分对黄刺玫叶片光响应特征参数的影响[J].生态学报,2016,36(16):5142-5149.
    [17] Lobo F A,De Barros M P,Dalmagro H J,et al. Fitting net photosynthetic light-response curves with Microsoft Excel-a critical look at the models[J]. Photosynthetica,2104,51(3):445-456.
    [18] dos Santos Junior U M,de Carvalho Goncalves J F,Fearnside P M. Measuring the impact of flooding on Amazonian trees:photosynthetic response models for ten species flooded by hydroelectric dams[J].Trees,2013,27(1):193-210.
    [19] Baly E C C. The kinetics of photosynthesis[J]. Proceedings of the Royal Society of London Series B,Biological Sciences,1935,117(804):218-239.
    [20] Thornley J H M. Mathematical Models in plant physiology[M],Academic Press(Inc.)London,Ltd,1976
    [21]朱永宁,张玉书,纪瑞鹏,等.干旱胁迫下3种玉米光响应曲线模型的比较[J].沈阳农业大学学报,2012,43(1):3-7.
    [22]惠红霞,许兴,李前荣.外源甜菜碱对盐胁迫下枸杞光合功能的改善[J].西北植物学报,2003,23(12):2137-2142.
    [23]康华靖,陶月良,权伟,等.植物光合CO2响应模型对光下(暗)呼吸速率拟合的探讨[J].植物生态学报,2014,38(12):1356-1363.
    [24] Lawlor D W. Limitation to photosynthesis in water-stressed leaves:Stomata vs. Metabolism and the role of ATP[J]. Annals of Botany,2002,89(7):871-885.
    [25] Cooper K,Farrant J M,Recovery of the resurrection plant Craterostigma wilmsii from desiccation:protection versus repair[J]. Journal of Experimental Botany,2002,53(375):1805-1813.
    [26]吴永波,薛建辉.盐胁迫对3种白蜡幼苗生长与光合作用的影响[J].南京林业大学学报:自然科学版,2002,26(3):19-22.
    [27]叶子飘,王怡娟,王令俐,等.大豆叶片光呼吸对光强和CO2浓度的响应[J].生态学杂志,2017,36(9):2535-2541.
    [28] Betti M,Bauwe H,Busch F A,et al. Manipulating photorespiration to increase plant productivity:recent advances and perspectives for crop improvement[J]. Journal of Experimental Botany,2016,67(10):2977-2988.
    [29]顾骏飞,周振翔,李志康,等.水稻低叶绿素含量突变对光合作用及产量的影响[J].作物学报,2016,42(4):551-560.
    [30]周振翔,李志康,陈颖,等.叶绿素含量降低对水稻叶片光抑制与光合电子传递的影响[J].中国农业科学,2016,49(19):3709-3720.
    [31]许晓明,张荣铣,唐运来.低叶绿素含量对突变体水稻吸收光能分配特性的影响[J].中国农业科学,2004,37(3):339-343.
    [32]汪义龙,夏莹萍,张洁,等.根据光合作用能量代谢测定光呼吸的方法研究[J].植物生理学报,2014,50(8):1248-1254
    [33] Busch F A,Sage R F,Farquhar G D. Plant increase CO2uptake by assimilating nitrogen via the photorespiratory pathway[J]. Nature Plant,2018,4(1):46.
    [34] Hagemann M,Bauwe H. Photorespiration and the potential to improve photosynthesis[J]. Current Opinion Chemical Biology,2016,35:109-116.
    [35]张智胜,彭新湘.光呼吸的功能及其平衡调控[J].植物生理学,2016,52(11):1692-1702.
    [36] Cui L L,Lu Y,Li Y,et al. Overexpression of glycolate oxidase confers improved photosynthesis under high light and high temperature in rice[J].Frontiers in Plant Science,2016,7:1165.
    [37] Hodges M,Dellero Y,Keech O,et al. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network[J]. Journal of experimental botany,2016,67(10):3015-3026.
    [38]吴沿友,梁铮,邢德科.模拟干旱胁迫下构树和桑树的生理特征比较[J].广西植物,2011,31(1):92-96.
    [39]陈丽梅,程敏熙,肖晓芳,等.盐溶液电导率与浓度和温度的关系测量[J].实验室研究与探索,2010,29(5):39-42.
    [40]陈拓,陈雄.甘肃马衔山平车前叶片δ13C的海拔和时间差异[J].西北植物学报,2000,20(4):672-675.
    [41]叶子飘.光合作用对光和CO2响应模型的研究进展[J].植物生态学报,2010,34(6):727-740.
    [42]吴沿友,饶森,张开艳,等.一种定量测定植物光呼吸途径份额的方法:中国,CN201620527771. 5[P]. 2016-12-14.
    [43]帅进霖,陈恩波,姜跃丽. PEG6000渗透胁迫对甜瓜幼苗叶片渗透调节物质及膜脂过氧化的影响[J].西北农业学报,2010,19(1):182-185.
    [44]郝福顺,崔香环,赵世领,等.渗透胁迫对黑麦幼苗活性氧和抗氧化酶活性的影响[J].植物学通报,2007,24(5):603-608.
    [45] Long S P,Humphries S,Falkowski P G. Photoinhibition of photosynthesis in nature[J]. Annual review of plant biology,1994,45(1):633-662.
    [46] Zhu X G,Ort D R,Whitmarsh J,et al. The slow reversibility of photosystemⅡthermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies:a theoretical analysis[J]. Journal of Experimental Botany,2004,55(400):1167-1175.
    [47] Chandra R,Sirohi G S. Carbon dioxide compensation concentration in pea and sorghum as influenced by growth stage,nitrogen and moisture stress[J]. India Journal of Plant Physiology,1983,26(4):331-336.
    [48] Lawlor D W,Fock H. Photosynthesis and photorespiratory CO2evolution of water-strssed sunflower leaves[J]. Planta,1975,126(3):247-258.
    [49] Smith E W,Tolbert N E,San Ku H. Variables affecting the CO2compensation point[J]. Plant Physiology,1976,58(2):143-146.
    [50]张华,康雅茸,徐春华.兰州银滩黄河湿地4种植物的光合特性[J].草业科学,2016,33(4):622-634.
    [51] Rubio F C,Camacho F G,Sevilla J M,et al. A mechanistic model of photosynthesis in microalgae[J]. Biotechnology and Bioengineering,2003,81(4):459-473.
    [52] Midgley G F,Aranibar J N,Mantlana K B,et al. Photosynthetic and gas exchange characteristics of dominant woody plant on a moisture gradient in an African savanna[J]. Global Change Biology,2004,10(3):309-317.
    [53]刘长成,刘玉国,郭柯.四种不同生活型植物幼苗对喀斯特生境干旱的生理生态适应性[J].植物生态学报,2011,35(10):1070-1082.
    [54] Wu Y Y,Xing D K. Effect of bicarbonate treatment on photosynthetic assimilation of inorganic carbon in two plant species of Moraceae[J]. Photosynthetica,2012,50(4):587-594.
    [55]蒋金豹,陈云浩,黄文江.病害胁迫下冬小麦冠层叶片色素含量高光谱遥感估测研究[J].光谱学与光谱分析,2007,27(07):1363-1367.
    [56]王丁,姚健,杨雪,等.干旱胁迫条件下6种喀斯特主要造林树种苗木叶片水势及吸水潜能变化[J].生态学报,2011,31(8):2216-2226.
    [57]单长卷,梁宗锁.土壤干旱对刺槐幼苗水分生理特征的影响[J].山东农业大学学报(自然科学版),2006,37(4):598-602.
    [58] Cooper K,Farrant J M. Recovery of the resurrection plant Craterostigma wilmsii from desiccation:protection versus repair[J]. Journal of Experimental Botany,2002,53(375):1805-1813.
    [59] Zhu L H,van de Peppel A,Li X Y,et al. Changes of leaf water potential and endogenous cytokinins in young apple trees treated with or without paclobutrazol under drought conditions[J]. Scientia Horticulturae,2004,99(2):133-141.
    [60]颜侃,陈宗瑜,王娟,等.不同生态区烤烟叶片温度碳同位素组成特征[J].生态学报,2015,35(11),3846-3853.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700