用户名: 密码: 验证码:
碎冰条件下单点系泊船舶动态响应特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic response characteristics of single point mooring ship under pack ice condition
  • 作者:杨佳东 ; 吕海宁 ; 王晋
  • 英文作者:YANG Jiadong;LYU Haining;WANG Jin;State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University;Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration;
  • 关键词:冰区船舶 ; 单点系泊 ; 数值模拟 ; 离散元方法
  • 英文关键词:ice-going ship;;single point mooring;;numerical simulation;;discrete element method
  • 中文刊名:HYGC
  • 英文刊名:The Ocean Engineering
  • 机构:上海交通大学海洋工程国家重点实验室;高新船舶与深海开发装备协同创新中心;
  • 出版日期:2019-03-30
  • 出版单位:海洋工程
  • 年:2019
  • 期:v.37
  • 基金:国家重点研发计划课题资助项目(2016YFC0303405);国家重点研发计划项目(2016YFC0303604);; 深水半潜支持平台研发专项经费资助(工信部联装函[2016]546号)
  • 语种:中文;
  • 页:HYGC201902004
  • 页数:11
  • CN:02
  • ISSN:32-1423/P
  • 分类号:33-43
摘要
为了研究不同单点系泊位置对极地系泊船舶在来冰角度改变时动态响应的影响,运用离散元方法(DEM),计算了船舶在60%密集度下,冰速为1.0 m/s、冰厚为1 m时不同角度的船冰阻力,结合系泊分析软件二次开发功能,计算分析系泊船舶在不同来冰角度和不同系泊位置下受上述冰情影响下的响应。通过对模拟结果与试验结果的对比,认为离散元方法(DEM)的数值模拟结果与试验结果吻合较好;单点系泊位置为距船头L/4时,系泊船舶能以最快速、最稳定的方式对来冰方向的变化做出响应。
        With the continuous depletion of oil and gas resources in the land,many countries have gradually realized that the polar region may be another fertile land with abundant oil and gas resources. In order to study the influence of the different single point mooring positions on the dynamic response of ships when the intruding angle of ice floes changes,the Discrete Element Method was used to calculate the ship-ice resistance with 60% ice concentration,1.0 m/s ice speed and 1.0 m ice thickness. Using the secondary development function of mooring analysis software,the dynamic response of single point mooring ship was calculated and analyzed with five different mooring positions under the influence of the aforementioned ice conditions. Through comparative analysis,it is concluded that the numerical simulation results of Discrete Element Method can be well matched with the experimental results. When the mooring position is on L/4 from the bow,the moored ship can respond to changes in the intruding angle of ice floes in the fastest and most stable way.
引文
[1]聂凤军,张伟波,曹毅,等.北极圈及邻区重要矿产资源找矿勘查新进展[J].地质科技情报,2013,32(05):1-8.(NIE Fengjun,ZHANG Weibo,CAO Yi,et al. New progress on the exploration of the important mineral resources of the arctic circle and its adjacent region[J]. Geological Science and Technology Information,2013,32(05):1-8.(in Chinese))
    [2] AKSNES V,BONNEMAIRE B. Analysis of the behaviour of a moored ship in variable ice drift[C]//Proceedings of the International Conference on Port and Ocean Engineering Under Arctic Conditions. 2009.
    [3]韩端锋,乔岳,薛彦卓,等.冰区航行船舶冰阻力研究方法综述[J].船舶力学,2017,21(8):1041-1054.(HAN Duanfeng,QIAO Yue,XUE Yanzhuo,et al. A review of ice resistance research methods for ice-going ships[J]. Journal of Ship Mechanics,2017,21(8):1041-1054.(in Chinese))
    [4] KARULIN E,KARULINA M. Numerical and physical simulations of moored tanker behaviour[J]. Ships&Offshore Structures,2011,6(3):179-184.
    [5]季顺迎,李紫麟,李春花,等.碎冰区海冰与船舶结构相互作用的离散元分析[J].应用力学学报,2013(4):520-526.(JI Shunying,LI Zilin,LI Chunhua,et al. Analysis of interaction between ice floe and ship hull with discrete element method in broken-ice field[J]. Chinese Journal of Applied Mechanics,2013(4):520-526.(in Chinese))
    [6] MICHAELLAU,LAWRENCE K,LeoRothenburg. Discrete element analysis of ice loads on ships and structures[J]. Ships&Offshore Structures,2011,6(3):211-221.
    [7] WANG J,DERRADJI-AOUAT A. Ship performance in broken ice floes-preliminary numerical simulations[R]. Canada:National Research Council,2010.
    [8] KIM M C,LEE S K,LEE W J,et al. Numerical and experimental investigation of the resistance performance of an icebreaking cargo vessel in pack ice conditions[J]. International Journal of Naval Architecture&Ocean Engineering,2013,5(1):116-131.
    [9]郭春雨,李夏炎,王帅,等.冰区航行船舶碎冰阻力预报数值模拟方法[J].哈尔滨工程大学学报,2016,37(2):145-150.(GUO Chunyu,LI Xiayan,WANG Shuai,et al. A numerical simulation method for resistance prediction of ship in pack ice[J]. Journal of Harbin Engineering University,2016,37(2):145-150.(in Chinese))
    [10] VROEGRIJK E. Validation of CFD+DEM against measured data[C]//Proceedings of the ASME 2015,International Conference on Ocean,Offshore and Arctic Engineering. 2015:V008T07A021.
    [11] KIM W J,KIM S P,SIM I H,et al. Ice resistance estimation and comparison the results with model test[C]//Proceedings of the Twenty-fifth(2015)International Ocean and Polar Engineering Conference. 2015.
    [12] DONG C S,PALLARD R. A numerical study of interaction between ice particles and complex ship structures[C]//Proceedings of the Arctic Technology Conference. 2016.
    [13] WRIGHT B. Evaluation of full-scale data for moored vessel stationkeeping in pack ice[J]. Cognitive Neuropsychology,1991:335-367.
    [14] BONNEMAIRE B,LUNDAMO T,EVERS K U,et al. Model testing of the arctic tandem offloading terminal mooring ice ridge loads[C]//Proceedings of the 19th IAHR International Symposium on Ice. 2008.
    [15] METRIKIN I,TEIGEN S H,GRTNER A,et al. Experimental and numerical investigations of a ship-shaped,turret-moored floating structure in intact and managed sea ice conditions[C]//Proceedings of the Arctic Technology Conference. 2015.
    [16] BONNEMAIRE B,LUNDAMO T,SERR N,et al. Numerical simulations of moored structures in ice:Influence of varying ice parameters[C]//Proceedings of the 21st International Conference on Port and Ocean Engineering Under Arctic Conditions.2011.
    [17] WOOLGAR R C,COLBOURNE D B. Effects of hull-ice friction coefficient on predictions of pack ice forces for moored offshore vessels[J]. Ocean Engineering,2010,37(2):296-303.
    [18] ZHOU L,SU B,RISKA K,et al. Numerical simulation of moored ship in level ice[C]//Proceedings of the ASME 2011,International Conference on Ocean,Offshore and Arctic Engineering. 2011:855-863.
    [19] ZHOU L,SU B,RISKA K,et al. Numerical simulation of moored structure station keeping in level ice[J]. Cold Regions Science&Technology,2012,71(4):54-66.
    [20] MARCHENKO A,ONISHCHENKO D. Analytical modeling of passive turn of turret moored vessel in close drift ice[C]//Proceedings of the International Conference and Exhibition for Oil and Gas Resources Development. 2015.
    [21] ONISHCHENKO D,MARCHENKO A. Analytical estimation of maneuverability of moored FPU with internal turret in close ice[C]//Proceedings of the International Conference on Port and Ocean Engineering Under Arctic Conditions. Trondheim,Norway.2015.
    [22] HANSEN E H,LSET S. Modelling floating offshore units moored in broken ice:model description[J]. Cold Regions Science&Technology,1999,29(2):97-106.
    [23] HANSEN E H,LSET S. Modelling floating offshore units moored in broken ice:Comparing simulations with ice tank tests[J].Cold Regions Science&Technology,1999,29(2):107-119.
    [24] CUNDALL P A,STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique,2008,29(30):331-336.
    [25] RENZO A D,MAIO F P D. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J]. Chemical Engineering Science,2004,59(3):525-541.
    [26] HAIDER A,LEVENSPIEL O. Drag coefficient and terminal velocity of spherical and nonspherical particles[J]. Powder Technology,1989,58(1):63-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700