用户名: 密码: 验证码:
低植酸水稻种质资源筛选、遗传生理调控与环境生态适应性研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Advances on the Low Phytic Acid Rice Breeding and Their Genetic Physiological Regulation and Environmental Adaptability
  • 作者:苏达 ; 吴良泉 ; S?ren ; KRasmussen ; 周庐建 ; 程方民
  • 英文作者:SU Da;WU Liangquan;S?ren K Rasmussen;ZHOU Lujian;CHENG Fangmin;Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University;International Magnesium Institute;Department of Plant and Environmental Sciences, Section of Plant and Soil Science, University of Copenhagen;College of Agriculture and Biotechnology, Zhejiang University;
  • 关键词:植酸 ; 水稻 ; 籽粒品质 ; 遗传调控 ; 生态效应
  • 英文关键词:phytic acid;;rice(Oryza sativa L.);;grain nutrition;;genetic regulation;;ecological effect
  • 中文刊名:ZGSK
  • 英文刊名:Chinese Journal of Rice Science
  • 机构:福建农林大学作物科学学院作物遗传育种与综合利用教育部重点实验室;福建农林大学国际镁营养研究所;哥本哈根大学植物与环境科学系;浙江大学农业与生物技术学院;
  • 出版日期:2019-03-10
  • 出版单位:中国水稻科学
  • 年:2019
  • 期:v.33;No.159
  • 基金:国家自然科学基金资助项目(31571602和31271655);; 福建省中青年教师教育科研项目(JAT170156);; 国家留学基金委资助项目;; 国家重点研发计划资助项目(2017YFD0200200)
  • 语种:中文;
  • 页:ZGSK201902001
  • 页数:13
  • CN:02
  • ISSN:33-1146/S
  • 分类号:3-15
摘要
提高或维持水稻产量的同时,提高稻米品质已成为目前水稻育种的首要目标之一。其中,通过降低籽粒中植酸等抗营养因子,增加锌、铁生物有效性以提升水稻营养品质,是目前水稻品质改良的一个重要方向。本文主要综述了水稻籽粒中植酸合成的代谢路径、低植酸水稻的筛选及相关功能基因的遗传特点、植酸生理代谢的调控网络、低植酸水稻农艺性状劣变和生态适应性降低的生理原因、籽粒植酸合成的环境调控效应等相关研究进展。可为低植酸水稻品质改良以及栽培调优提供借鉴。
        Breeding variety with improved quality while maintaining or improving yields is one of the primary objectives in rice breeding. Among which, reducing the anti-nutritional factors, such as grain phytic acid content, is an effective strategy to cope with hidden hunger and increase grain bioavailabilities of zinc and iron. In this paper, we reviewed the biosynthesis of phytic acid and the genetic characteristics of related functional genes, the co-regulatory networks of phytic acid synthesis and other physiological metabolism, breeding of low phytic acid(lpa) germplasm resource and their genetic characteristics, agronomic performance and environmental ecological adaptability of lpa mutants, the possible reasons for their agronomic deterioration and ecological adaptation change, and the environmental regulation of grain phytic acid accumulation. Those contents could provide reference for production of lpa rice with suitable agronomic cultivation practices.
引文
[1]Raboy V.Seeds for a better future:'Low phytate',grains help to overcome malnutrition and reduce pollution.Trends Plant Sci,2001,6(10):458-462.
    [2]Borg S,Brinch-Pedersen H,Tauris B,Holm P B.Iron transport,deposition and bioavailability in the wheat and barley grain.Plant Soil,2009,325(1-2):15-24.
    [3]Rosa-Sibakov N,Kaisa P,Valérie M.How does wheat grain,bran and aleurone structure impact their nutritional and technological properties?Trends Food Sci Technol,2015,41(2):118-134.
    [4]张倩雯,丁广大,王效华,Liu L,King J G,徐芳森,石磊.植物种子植酸研究进展.植物科学学报,2016,34(5):814-820.Zhang Q W,Ding G D,Wang X H,Liu L,King J G,Xu FS,Shi L.Research progress on plant seed phytate.Plant Sci J,2016,34(5):814-820.(in Chinese with English abstract)
    [5]Brinch-Pedersen H,Sorensen L D,Holm P B.Engineering crop plants:Getting a handle on phosphate.Trends Plant Sci,2002,7(3):118-125.
    [6]Welch R M,Graham R D.Breeding for micronutrients in staple food crops from a human nutrition perspective.JExp Bot,2004,55(396):353-364.
    [7]Boncompagni E,Gregorio O,Eleonora C,Prakash I G,Stefania G,Theophilus T K Z,Maria G D,Erik N,Francesca S.Antinutritional factors in pearl millet grains:Phytate and goitrogens content variability and molecular characterization of genes involved in their pathways.PloS One,2018,13(6):e0198394.
    [8]Loewus F A,Murthy P.Myo-inositol metabolism in plants.Plant Sci,2000,150(1):1-19.
    [9]Raboy V.Low-phytic-acid grains.Food Nutr Bull,2000,21(4):423-427.
    [10]Suzuki M,Tanaka K,Kuwano M,Yoshida K T.Expression pattern of inositol phosphate-related enzymes in rice(Oryza sartiva L.):Implications for the phytic acid biosynthetic pathway.Gene,2007,405(1-2):55-64.
    [11]Coelho C M,Tsai S M,Vitorello V A.Dynamics of inositol phosphate pools(tris-,tetrakis-and pentakisphosphate)in relation to the rate of phytate synthesis during seed development in common bean(Phaseolus vulgaris L.).J Plant Physiol,2005,162(1):1-9.
    [12]Shi J,Wang H,Wu Y,Hazebroek J,Meeley R B,Ertl DS.The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene.Plant Physiol,2003,131(2):507-515.
    [13]Cui M,Liang D,Ma F W.Molecular cloning and characterization of a cDNA encoding kiwifruit L-myo-inositol-1-phosphate synthase,a key gene of inositol formation.Mol Biol Rep,2013,40(1):697-705.
    [14]Perera I,Saman S,Naoki H.Manipulating the phytic acid content of rice grain toward improving micronutrient bioavailability.Rice,2018,11(1):4.
    [15]Coelho C M,Benedito V A,Figueira A,Vitorello V A,Azevedo R A.Variation in the enzyme activity and gene expression of myo-inositol-3-phosphate synthase and phytate accumulation during seed development in common bean(Phaseolus vulgaris L.).Acta Physiol Plant,2007,190(3):24-39.
    [16]Larson S R,Rutger J N,Young K A,Raboy V.Isolation and genetic mapping of a non-lethal rice(Oryza sativa L.)low phytic acid 1 mutation.Crop Sci,2000,40(5):1397-1405.
    [17]Wilcox J R,Premachandra G S,Young K A,Raboy V.Isolation of high seed inorganic P,low-phytate soybean mutants.Crop Sci,2000,40(6):1601-1605.
    [18]Yuan F J,Zhao H J,Ren X L,Zhu S L,Fu X J,Shu Q Y.Generation and characterization of two novel low phytate mutations in soybean(Glycine max L.Merr.).Theor Appl Genet,2007,115(7):945-957.
    [19]Hambidge K M,Krebs N F,Westcott J L,Sian L,Miller L V,Peterson K L,Raboy V.Absorption of calcium from tortilla meals prepared from low-phytate maize.Am JClin Nutr,2005,82(1):84-87.
    [20]Poulsen H D,Johansen K S,Hatzack F,Boisen S,Rasmussen S R K.Nutritional value of low-phytate barley evaluated in rats.Acta Agr Scand A-An,2001,51(1):53-58.
    [21]Petry N,Egli I,Campion B,Nielsen E,Hurrell R.Genetic reduction of phytate in common bean(Phaseolus vulgaris L.)seeds increases iron absorption in young women.JNutr,2013,143(8):1219-1224.
    [22]Hambidge K M,Huffer J W,Raboy V,Grunwald G K,Westcott J L,Sian L,Miller L V,Dorsch J A,Krebs N F.Zinc absorption from low-phytate hybrids of maize and their wild-type isohybrids.Am J Clin Nutr,2004,79(6):1053-1059.
    [23]Kuwano M,Mimura T,Takaiwa F,Yoshida K T.Generation of stable'low phytic acid'transgenic rice through antisense repression of the 1D-myo-inositol3-phosphate synthase gene(RINO1)using the 18-k Da oleosin promoter.Plant Biotechnol J,2009,7(1):96-105.
    [24]Feng X,Yoshida K T.Molecular approaches for producing low-phytic-acid grains in rice.Plant Biotechnol,2004,21(3):183-189.
    [25]Li W X,Huang J Z,Zhao H J,Tan Y Y,Cui H R,Poirier Y,Shu Q Y.Production of low phytic acid rice by hairpin RNA-and artificial microRNA-mediated silencing of Os MIK in seeds.Plant Cell Tiss Org,2014,119(1):15-25.
    [26]Kuwano M,Ohyama A,Tanaka Y,Mimura T,Takaiwa F,Yoshida K T.Molecular breeding for transgenic rice with low-phytic-acid phenotype through manipulating myo-inositol 3-phosphate synthase gene.Mol Breeding,2006,18(3):263-272.
    [27]Ali N,Paul S,Gayen D,Sarkar S N,Datta S K,Datta K.RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice.Rice,2013,6(1):1-12.
    [28]Kim S I,Andaya C B,Newman J W,Goyal S S,Tai T H.Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK.Theor Appl Genet,2008,117(8):1291-1301.
    [29]Kim S I,Andaya C B,Goyal S S,Tai T H.The rice Os Lpa1 gene encodes a novel protein involved in phytic acid metabolism.Theor Appl Genet,2008,117(5):769-779.
    [30]Zhao H J,Liu Q L,Ren X L,Wu D X,Shu Q Y.Gene identification and allele-specific marker development for two allelic low phytic acid mutations in rice(Oryza sativa L.).Mol Breeding,2008,22(4):603-612.
    [31]Kim S,Tai T H.Identification of novel rice low phytic acid mutations via TILLING by sequencing.Mol Breeding,2014,34(4):1717-1729.
    [32]Ali N,Paul S,Gayen D,Sarkar S N,Datta K,Datta S K.Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakis phosphate 2-kinase gene(IPK1).PloS One,2013,8(7):e68161.
    [33]Nagy R,Grob H,Weder B,Green P,Klein M,Frelet-Barrand A,Schjoerring J K,Brearley C,Martinoia E.The Arabidopsis ATP-binding cassette protein ATMRP5/ATABCC5 is a high-affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage.J Biol Chem,2009:jbc.M109.030247.
    [34]Xu X H,Zhao H J,Liu Q L,Frank T,Engel K H,An GH,Shu Q Y.Mutations of the multi-drug resistance-associated protein ABC transporter gene 5result in reduction of phytic acid in rice seeds.Theor Appl Genet,2009,119(1):75-83.
    [35]Wanke D,üner Kolukisaoglu H.An update on the ABCCtransporter family in plants:Many genes,many proteins,but how Many functions?Plant Biol,2010,12:15-25.
    [36]Maroof M A,Glover N M,Biyashev R M,Buss G R,Grabau E A.Genetic basis of the low-phytate trait in the soybean line CX1834.Crop Sci,2009,49(1):69-76.
    [37]Panzeri D,Cassani E,Doria E,Tagliabue G,Fort L,Campion B,Bollini R,Brearley C A,Pilu R,Nielsen E,Sparvoli F.A defective ABC transporter of the MRPfamily,responsible for the bean lpa1 mutation,affects the regulation of the phytic acid pathway,reduces seed myo-inositol and alters ABA sensitivity.New Phytol,2011,191(1):70-83.
    [38]Cerino B F,Amelotti M,Cassani E,Pilu R.Study of low phytic acid1-7(lpa1-7),a new ZmMRP4 mutation in maize.J Hered,2012,103(4):598-605.
    [39]Shi J,Wang H,Hazebroek J,Harp T.The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds.Plant J,2005,42(5):708-719.
    [40]Pilu R,Panzeri D,Cassani E,Cerino B F,Landoni M,Nielsen E.A paramutation phenomenon is involved in the genetics of maize low phytic acid 1-241(lpa1-241)trait.Heredity,2009,102(3):236-245.
    [41]Bhati K K,Alok A,Kumar A,Kaur J,Tiwari S,Pandey AK,Notes A.Silencing of ABCC13 transporter in wheat reveals its involvement in grain development,phytic acid accumulation and lateral root formation.J Exp Bot,2016,67(14):4379-4389.
    [42]Bhati K K,Aggarwal S,Sharma S,Mantri S,Singh S P,Bhalla S,Kaur J,Tiwari S,Roy J K,Tuli R,Pandey A K.Differential expression of structural genes for the late phase of phytic acid biosynthesis in developing seeds of wheat(Triticum aestivum L.).Plant Sci,2014,224:74-85.
    [43]Mitsuhashi N,Kondo M,Nakaune S,Ohnishi M,Hayashi M,Hara-Nishimura I,Richardson A,Fukaki H,Nishimura M,Mimura T.Localization of myo-inositol-1-phosphate synthase to the endosperm in developing seeds of Arabidopsis.J Exp Bot,2008,59(11):3069-3076.
    [44]Chiera J M,Grabau E A.Localization of myo-inositol phosphate synthase(Gm MIPS-1)during the early stages of soybean seed development.J Exp Bot,2007,58:2261-2268.
    [45]Li W X,Zhao H J,Pang W Q,Cui H R,Poirier Y,Shu QY.Seed-specific silencing of OsMRP5 reduces seed phytic acid and weight in rice.Transgen Res,2014,23(4):585-599.
    [46]Sparvoli F,Cominelli E.Seed biofortification and phytic acid reduction:a conflict of interest for the plant?Plants,2015,4(4):728-755.
    [47]Borghi L,Kang J,Ko D,Lee Y,Marinoia E.The role of ABCG-type ABC transporters in phytohormone transport.Biochem Soc T,2015,43(5):924-930.
    [48]Cominelli E,Confalonieri M,Carlessi M,Cortinovisa G,Daminati M G,Porch T G,Losa A,Sparvoli F.Phytic acid transport in Phaseolus vulgaris:A new low phytic acid mutant in the PvMRP1 gene and study of the Pv MRPs promoters in two different plant systems.Plant Sci,2018,270:1-12.
    [49]Israel D W,Taliercio E,Kwanyuen P,Burton J W,Dean L.Inositol metabolism in developing seed of low and normal phytic acid soybean lines.Crop Sci,2011,51:282-289.
    [50]Redekar N,Pilot G,Raboy V,Song L,Saghai-Maroof MA.Inference of transcription regulatory network in low phytic acid soybean seeds.Front Plant Sci,2017,8:2029.
    [51]Redekar N R,Biyashev R M,Jensen R V,Helm R,Grabau E A,Maroof M A.Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines.BMC Genom,2015,16(1):1074.
    [52]Liu K S,Xu X H,Ren X L,Fu H W,Wu D X,Shu Q Y.Generation and characterization of low phytic acid germplasm in rice(Oryza sativa L.).Theor Appl Genet,2007,114(5):803-814.
    [53]Zhao H J,Liu Q L,Fu H W,Xu X H,Wu D X,Shu Q Y.Effect of non-lethal low phytic acid mutations on grain yield and seed viability in rice.Field Crop Res,2008,108(3):206-211.
    [54]Zhao H,Frank T,Tan Y.Disruption of Os SULTR3;3reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains.New Phytol,2016,211(3):926-939.
    [55]Ye H,Zhang X Q,Broughton S,Westcott S,Wu D,Lance R,Li C.A nonsense mutation in a putative sulphate transporter gene results in low phytic acid in barley.Funct Integr Genom,2011,11(1):103-110.
    [56]Takahashi H,Buchner P,Yoshimoto N,Hawkesford M J,Shiu S H.Evolutionary relationships and functional diversity of plant sulfate transporters.Front Plant Sci,2012,2:119.
    [57]Zhang S,Yang W,Zhao Q,Zhou X,Jiang L,Ma S,Liu X,Li Y,Zhang C,Fan Y,Chen R.Analysis of weighted co-regulatory networks in maize provides insights into new genes and regulatory mechanisms related to inositol phosphate metabolism.BMC Genom,2016,17(1):129.
    [58]Frank T,Norenberg S,Engel K H.Metabolite profiling of two novel low phytic acid(lpa)soybean mutants.J Agric Food Chem,2009,57(14):6408-6416.
    [59]Emami K,Morris N J,Cockell S J,Golebiowska G,Shu Q Y,Gatehouse A M R.Changes in protein expression profiles between a low phytic acid rice(Oryza sativa L.ssp.japonica)line and its parental line:a proteomic and bioinformatic approach.J Agric Food Chem,2010,58(11):6912-6922.
    [60]Rutger J N,Raboy V,Moldenhauer K A K,Bryant R J,Lee F N,Gibbons J W.Registration of KBNT lpa1-1 low phytic acid germplasm of rice.Crop Sci,2004,44(1):363-364.
    [61]Lott J N A,Liu J C,Ockenden I,Truax M.Phytic acid-phosphorus and other nutritionally important mineral nutrient elements in grains of wild-type and low phytic acid(lpa1-1)rice.Seed Sci Res,2004,14(2):109-116.
    [62]Andaya C B,Tai T H.Fine mapping of the rice low phytic acid(Lpa1)locus.Theor Appl Genet,2005,111(3):489-495.
    [63]Yatou O,Aoki H,Aii J,Tanaka H.Selection of novel non-lethal,low phytic acid mutants and evaluation of their agronomic traits/mineral compositions in rice(Oryza sativa).Jarq-jpn Agr Res Q:Jarq,2018,52(1):39-47.
    [64]Hitz W D,Carlson T J,Kerr P S,Sebastian S A.Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds.Plant Physiol,2002,128(2):650-660.
    [65]Edwards J D,Jackson A K,McClung A M.Genetic architecture of grain chalk in rice and interactions with a low phytic acid locus.Field Crop Res,2017,205:116-123.
    [66]Zhou L,Ye Y,Zhao Q,Du X,Zakari S A,Su D,Pan G,Cheng F M.Suppression of ROS generation mediated by higher InsP3 level is critical for the delay of seed germination in lpa rice.Plant Growth Regul,2018,85(3):411-424.
    [67]Oltmans S E,Fehr W R,Welke G A,Raboy V,Peterson K L.Agronomic and seed traits of soybean lines with low-phytate phosphorus.Crop Sci,2005,45(2):593-598.
    [68]Bregitzer P,Raboy V.Effects of four independent low-phytate mutations in barley on(Hordeum vulgare L.)seed phosphorus characteristics and malting quality.Cereal Chem,2006,83:460-464.
    [69]Meis S J,Fehr W R,Schnebly S R.Seed source effect on field emergence of soybean lines with reduced phytate and raffinose saccharides.Crop Sci,2003,43(4):1336-1339.
    [70]Hulke B S,Fehr W R,Welke G A.Agronomic and seed characteristics of soybean with reduced phytate and palmitate.Crop Sci,2004,44:2027-2031.
    [71]Su D,Lei B T,Li Z W,Cao Z Z,Huang F D,Pan G,Ding Y,Cheng F M.Influence of high temperature during filling period on grain phytic acid and its relation to spikelet sterility and grain weight in non-lethal low phytic acid mutations in rice.J Cereal Sci,2014,60(2):331-338.
    [72]Pilu R,Landoni M,Cassani E,Doria E,Nielsen E.The maize lpa241 mutation causes a remarkable variability of expression and some pleiotropic effects.Crop Sci,2005,45:2096-2105.
    [73]Raboy V,Gerbasi P F,Young K A,Stoneberg S D,Pickett S G,Bauman A T,Murthy P,Sheridan W F,Ertl D S.Origin and seed phenotype of maize low phytic acid1-1 and low phytic acid 2-1.Plant Physiol,2000,124(1):355-368.
    [74]David E B,Edward J S,Mary J G,Victor R,Jianming F.A low phytic acid barley mutation alters seed gene expression.Crop Sci,2007,47:S149.
    [75]Ertl D S,Young K A,Raboy V.Plant genetic approaches to phosphorus management in agricultural production.JEnviron Qual,1998,27(2):299-304.
    [76]Nunes A C,Vianna G R,Cuneo F,Amayafarf A,De-Capdeville G,Rech L,Arag A.RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene(Gm MIPS1)in transgenic soybean inhibited seed development and reduced phytate content.Planta,2006,224(1):125-132.
    [77]Raboy V,Peterson K.A substantial fraction of barley(Hordeum vulgare L.)low phytic acid mutations have little or no effect on yield across diverse production environments.Plants,2015,4(2):225-239.
    [78]Naidoo R,Tongoona P,Derera J,Laing M D,Watson GM F.Combining ability of low phytic acid(lpa1-1)and quality protein maize(QPM)lines for seed germination and vigour under stress and non-stress conditions.Euphytica,2012,185(3):529-541.
    [79]Ockenden I,Dorsch J A,Reid M M,Lin L,Grant L K,Raboy V,Lott J N A.Characterization of the storage of phosphorus,inositol phosphate and cations in grain tissues of four barley(Hordeum vulgare L.)low phytic acid genotypes.Plant Sci,2004,167(5):1131-1142.
    [80]Sheard L B,Tan X,Mao H,Withers J,Ben-Nissan G,Hinds T R,Kobayashi Y,Hsu F F,Sharon M.Jasmonate perception by inositol-phosphate-potentiated COI1-JAZco-receptor.Nature,2010,468(7322):400-405.
    [81]Ananieva E,Gillaspy G.Switches in nutrient and inositol signaling.Plant Signal Behav,2009,4(4):304-306.
    [82]Lemtiri-Chlieh F,MacRobbie E,Webb A,Manison N F,Brownlee C,Skeppe J N,Chen J,Prestwich G D,Brearley C A.Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells.Proc Natl Acad Sci U.S.A,2003,100(17):10091-10095.
    [83]Murphy A M,Otto B,Brearley C A,Carr J P,Hanke DE.A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens.Plant J,2008,56(4):638-652.
    [84]Munnik T,Vermeer J E.Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants.Plant Cell Environ,2010,33(4):655-669.
    [85]Stevenson-Paulik J,Bastidas R J,Chiou S T,Frye R A,York J D.Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases.Proc Natl Acad Sci U.S.A,2005,102(35):12612-12617.
    [86]Kuo H,Chang T,Chiang S.Arabidopsis inositol pentakisphosphate 2-kinase,AtIPK1,is required for growth and modulates phosphate homeostasis at the transcriptional level.Plant J,2014,80(3):503-515.
    [87]Qin Z,Chen Q,Tong Z.The Arabidopsis inositol1,3,4-trisphosphate 5/6 kinase,AtItpk-1,is involved in plant photomorphogenesis under red light conditions,possibly via interaction with COP9 signalosome.Plant Physiol Bioch,2005,43(10-11):947-954.
    [88]Latrasse D,Jegu T,Meng P H,Mazubert C,Hudik E,Delarue M,Charon C,Crespi M,Hirt H,Raynaud C,Bergounioux C,Benhamed M.Dual function of MIPS1as a metabolic enzyme and transcriptional regulator.Nuc Acids Res,2013,41(5):2907-2917.
    [89]Loewus F A,Loewus M W.Myo-inositol:its biosynthesis and metabolism.Ann Rev Plant Physiol,1983,34(1):137-161.
    [90]Gumber S C,Loewus M W,Loewus F A.Further studies on myo-Inositol-1-phosphatase from the pollen of Lilium longiflorum Thunb.Plant Physiol,1984,76(1):40-44.
    [91]Irvine R F,Schell M J.Back in the water:The return of the inositol phosphates.Nat Rev Mol Cell Bio,2001,2(5):327-338.
    [92]Hui Q,Yang R,Shen C,Zhou Y,Gu Z.Mechanism of calcium lactate facilitating phytic acid degradation in soybean during germination.J Agric Food Chem,2016,64(27):5564-5573.
    [93]Nelson D E,Rammesmayer G,Bohnert H J.Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance.Plant Cell,1998,10(5):753-764.
    [94]Patra B,Ray S,Richter A,Majumder A L.Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and Mc IMT1 is accompanied by increased level of myo-inositol and methylated inositol.Protoplasma,2010,245(1-4):143-152.
    [95]Majee M,Maitra S,Dastidar K G,Pattnaik S,Chatterjee A,Hait N C,Das K P,Majumder A L.A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata(Roxb.)Tateoka,a halophytic wild rice molecular cloning,bacterial overexpression,characterization,and functional introgression into tobacco-conferring salt tolerance phenotype.J Biol Chem,2004,279(27):28539-28552.
    [96]Ishitani M,Majumder A L,Bornhouser A,Michalowski CB,Jensen R G,Bohnert H J.Coordinate transcriptional induction of myo-inositol metabolism during environ mental stress.Plant J,1996,9(4):537-548.
    [97]Boominathan P,Shukla R,Kumar A,Manna D,Negi D,Verma P K,Chattopadhyay D.Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum.Plant Physiol,2004,135(3):1608-1620.
    [98]Abreu E,Aragao F.Isolation and characterization of a myo-inositol-1-phosphate synthase gene from yellow passion fruit(Passiflora edulis f.flavicarpa)expressed during seed development and environmental stress.Ann Bot-London,2007,99(2):285-292.
    [99]Iwai T,Takahashi M,Oda K,Terada Y,Yoshida K T.Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development.Plant Physiol,2012,160(4):2007-2014.
    [100]Kaur H,Shukla R K,Yadav G,Chattopadhyay D,Majee M.Two divergent genes encoding L-myo-inositol1-phosphate synthase1(CaMIPS1)and 2(CaMIPS2)are differentially expressed in chickpea.Plant Cell Environ,2008,31(11):1701-1716.
    [101]Das-Chatterjee A,Goswami L,Maitra S,Dastidar K G,Ray S,Majumder A L.Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata(Roxb.)Tateoka(PcINO1)confers salt tolerance to evolutionary diverse organisms.FEBSLett,2006,580(16):3980-3988.
    [102]Plaxton W C,Preiss J.Purification and properties of nonproteolytic degraded ADPglucose pyrophosphorylase from maize endosperm.Plant Physiol,1987,83(1):105-112.
    [103]Bilgrami S S,Houshmand S,Kadivar M,Fakheri B,Zandi P,Shariati V,Razavi K,Tavakol E,Mahdinezhad N,Sabouri S J,Kumar B S,Mo?d?eńK.Phytic acid,iron and zinc content in wheat ploidy levels and amphiploids:The impact of genotype and planting seasons.Arch Acker Pfl Boden,2018,64(3):331-346.
    [104]Miller G A,Youngs V L.Environmental and cultivar effects on oat phytic acid concentration.Cereal Chem,1980,57:189-191.
    [105]Batten G D,Lott J.The influence of phosphorus nutrition on the appearance and composition of globoid crystals in wheat aleurone cells.Cereal Chem,1986,63(1):14-18.
    [106]Feil B,Fossati D.Phytic acid in triticale grains as affected by cultivar and environment.Crop Sci,1997,37(3):916-921.
    [107]Jaksomsak P,Tuiwong P,Rerkasem B,Guild G,Palmer L,Stangoulis J,Prom-u-thai C T.The impact of foliar applied zinc fertilizer on zinc and phytate accumulation in dorsal and ventral grain sections of four Thai rice varieties with different grain zinc.,J Cereal Sci,2018 79:6-12.
    [108]Dost K,Tokul O.Determination of phytic acid in wheat and wheat products by reverse phase high performance liquid chromatography.Anal Chim Acta,2006,558(1-2):22-27.
    [109]Dai F,Wang J,Zhang S,Xu Z,Zhang G.Genotypic and environmental variation in phytic acid content and its relation to protein content and malt quality in barley.Food Chem,2007,105(2):606-611.
    [110]Thavarajah D,Thavarajah P,See C T,Vandenberg A.Phytic acid and Fe and Zn concentration in lentil(Lens culinaris L.)seeds is influenced by temperature during seed filling period.Food Chem,2010,122(1):254-259.
    [111]Fernando N,Panozzo J,Tausz M,Norton R M,Fitzgerald G J,Myers S,Nicolas M E,Seneweera S.Intra-specific variation of wheat grain quality in response to elevated[CO2]at two sowing times under rain-fed and irrigation treatments.J Cereal Sci,2014,59(2):137-144.
    [112]Dhole V J,Reddy K S.Genetic variation for phytic acid content in mungbean(Vigna radiata L.Wilczek).The Crop J,2015,3(2):157-162.
    [113]赵宁春,张小明,叶胜海,程方民.不同栽培方式和施氮量对稻米营养品质及植酸积累的影响.浙江农业学报,2009,21(3):259-263.Zhao N C,Zhang X M,Ye S H,Cheng F M.Effects of different cultivation methods and nitrogen application on grain phytic acid contents and nutritional quality for japonica rice.Acta Agric Zhejiang,2009,21(3):259-263.(in Chinese with English abstract)
    [114]赵宁春,张其芳,程方民,周伟军.氮、磷、锌营养对水稻籽粒植酸含量的影响及与几种矿质元素间的相关性.中国水稻科学,2007,21(2):185-190.Zhao N C,Zhang Q F,Cheng F M.Phosphorus and zinc supply levels on grain phytic acid content and its correlation with several mineral nutrients in rice grain.Chin J Rice Sci,2007,21(2):185-190.(in Chinese with English abstract)
    [115]Steiner T,Mosenthin R,Zimmermann B,Greiner R,Roth S.Distribution of phytase activity,total phosphorus and phytate phosphorus in legume seeds,cereals and cereal by-products as influenced by harvest year and cultivar.Anim Feed Sci Tech,2007,133(3-4):320-334.
    [116]Liu Z H,Cheng F M,Zhang G P.Grain phytic acid content in japonica rice as affected by cultivar and environment and its relation to protein content.Food Chem,2005,89(1):49-52.
    [117]Magallanes-López A M,Hernandez-Espinosa N,Velu G,Posadas-Romano G,Ordo?ez-Villegas V M G,Crossa J,Ammar K,Guzmán C.Variability in iron,zinc and phytic acid content in a worldwide collection of commercial durum wheat cultivars and the effect of reduced irrigation on these traits.Food Chem,2017,237:499-505.
    [118]Hummel M,Hallahan B F,Brychkova G,Ramirez-Villegas J,Guwela V,Chataika B,Curley E,Mc Keown P C,Morrison L,Talsma E F,Beebe S,Jarvis A,Chirwa R,Spillane C.Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa.Sci Rep,2018,8:16187.
    [119]Gibson L R,Mullen R E.Mineral concentrations in soybean seed produced under high day and night temperature.Can J Plant Sci,2001,81(4):595-600.
    [120]Ning H,Liu Z,Wang Q,Lin Z,Chen S,Li G,Wang S,Ding Y.Effect of nitrogen fertilizer application on grain phytic acid and protein concentrations in japonica rice and its variations with genotypes.J Cereal Sci,2009,50(1):49-55.
    [121]Khan A M,Hussain S,Rengel Z,Shah M A A.Zinc bioavailability and nitrogen concentration in grains of wheat crop sprayed with zinc sulfate,ammonium sulfate,ammonium chloride,and urea.J Plant Nutr,2018,41(15):1926-1936.
    [122]Wang Z M,Liu Q,Pan F,Yuan L X,Yin X B.Effects of increasing rates of zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc bio-fortified wheat.Field Crop Res,2015,184:58-64.
    [123]张其方,刘奎刚,苏达,王复标,程方民.氮素和水分处理对稻米植酸含量和蛋白组分的影响.植物营养与肥料学报,2012,18(3):542-550.Zhang Q F,Liu K G,Su D,Wang F B,Cheng F M.Effects of different nitrogen and water treatments on phytic acid contents and protein components in rice grain.Plant Nutr Fert Sci,2012,18(3):542-550.(in Chinese with English abstract)
    [124]Su D,Zhou L J,Zhao Q,Pan G,Cheng F M.Different phosphorus supplies altered the accumulations and quantitative distributions of phytic acid,zinc,and iron in rice(Oryza sativa L.)Grains.J Agric Food Chem,2018,66(7):1601-1611.
    [125]Raboy V,Dickinson D B.Phytic acid levels in seeds of Glycine max and G.soja as influenced by phosphorus status.Crop Sci,1993,33(6):1300-1305.
    [126]Buerkert A,Haake C,Ruckwied M,Marschner H.Phosphorus application affects the nutritional quality of millet grain in the Sahel.Field Crop Res,1998,57(2):223-235.
    [127]Zhang W,Liu D Y,Liu Y M,Chen X P,Zou C Q.Overuse of phosphorus fertilizer reduces the grain and flour protein contents and zinc bioavailability of winter wheat(Triticum aestivum L.).J Agric Food Chem,2017,65(8):1473-1482.
    [128]Lickfett T,Matthaus B,Velasco L,Mollers C.Seed yield,oil and phytate concentration in the seeds of two oilseed rape cultivars as affected by different phosphorus supply.Eur J Agron,1999,11(3-4):293-299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700