用户名: 密码: 验证码:
纳米连接过程的分子动力学模拟研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Process of Molecular Dynamics Simulation of Nanojoining Processes
  • 作者:李红 ; 袁俊丽 ; 栗卓新 ; TILLMANN ; Wolfgang ; 胡安明
  • 英文作者:LI Hong;YUAN Junli;LI Zhuoxin;TILLMANN Wolfgang;HU Anming;College of Materials Science and Engineering,Beijing University of Technology;Institute of Material Engineering,Dortmund University of Technology;Department of Mechanical Aeronautical Biomedical Engineering,University of Tennessee;
  • 关键词:纳米连接 ; 分子动力学模拟 ; 纳米材料 ; 自蔓延反应
  • 英文关键词:nanojoining;;molecular dynamics simulation;;nano material;;self-propagating reaction
  • 中文刊名:ZGJX
  • 英文刊名:China Mechanical Engineering
  • 机构:北京工业大学材料科学与工程学院;多特蒙德工业大学材料工程研究所;田纳西大学机械航空生物医疗工程系;
  • 出版日期:2019-02-28 11:16
  • 出版单位:中国机械工程
  • 年:2019
  • 期:v.30;No.508
  • 基金:国家自然科学基金资助项目(51475007);; 北京市自然科学基金资助项目(3172006);; 碳基纳米材料北京市国际科技合作基地资助项目
  • 语种:中文;
  • 页:ZGJX201904016
  • 页数:8
  • CN:04
  • ISSN:42-1294/TH
  • 分类号:112-119
摘要
纳米材料因其特有的结构和性能而得到广泛的应用,纳米连接技术也随之发展起来。在纳米加工领域,虽然有很多先进的显微分析手段,但由于实时观察技术的限制,材料的很多现象和行为很难通过实验进行观测和分析,而分子动力学适用于几纳米到几十纳米的三维空间尺度和纳秒以下的时间尺度,同纳米加工领域很多过程的时间尺度和空间尺度保持一致,因此,利用分子动力学模拟纳米材料性能和连接过程原子的动力学行为是可行的。综述了纳米材料(包括纳米多层膜、纳米线、碳纳米管、纳米颗粒)在纳米连接过程以及连接大尺寸材料过程中的分子动力学模拟研究进展,模拟结果与实验结果基本吻合。结合最新研究进展,讨论了分子动力学模拟在纳米连接应用中的存在问题、解决办法和发展趋势。
        Nano materials were widely used because of their unique structures and properties,and nano joining technology was also developed.In the field of nanofabrication,although there were many varieties of advanced microscopy methods,it was difficult to observe and analyze many phenomenons and behaviors of nano materials by experiments due to the restrictions of real-time observation.Molecular dynamics simulation within nanometer spatial scales and nanoseconds time scale allowed insight into molecular motions on an atomic scale since it was consistent with the time and spatial scales of many processes in nanofabrication.Therefore,it was feasible to use molecular dynamics simulation to simulate the properties of nanomaterials and the dynamic behavior of atoms in the nano joining processes.Herein,the progresses of molecular dynamics simulation of nano-scale materials,including nanomultilayers,nanowires,carbon nanotubes and nanoparticles in the nanojoining processes,as well as applications of these materials for joining of large size materials were reviewed.Meanwhile it is illustrated that the simulation results are in good agreement with the experimental ones.The existing problems,possible solutions and development trends were discussed.
引文
[1]李维芬.纳米材料的性质[J].现代化工,1999,19(16):1-5.LI Weifen.Properties of Nanomaterials[J].Modern Chemical Industry,1990,19(16):1-5.
    [2]刘芳.纳米材料的结构与性质[J].光谱实验室,2011,28(2):735-738.LIU Fang.Structure and Character of Nanomaterials[J].Chinese Journal of Spectroscopy Laboratory,2011,28(2):735-738.
    [3]韩方,陈冰泉.纳米材料在焊接领域的应用研究[J].电焊机,2006,36(11):34-38.HAN Fang,CHEN Bingquan.Application of Nanomaterials in Welding Field[J].Electric Welding Machine,2006,36(11):34-38.
    [4]何鹏,矫震,王君,等.纳米尺度连接技术的研究现状与展望[J].焊接学报,2013,34(2):109-113.HE Peng,JIAO Zhen,WANG Jun,et al.Research Progress and Prospect of Nanoscale Connection Technology[J].Transactions of the China Welding Institution,2013,34(2):109-113.
    [5] ANDERSON H C.Molecular Dynamics Simulations at Constant Press and/or Temperature[J].J.Chen.Phys.,1980,72(4):384-2391.
    [6] LIEM S Y,CHAN K Y.Simulation Study of Platinum Adsorption on Graphite Using the SuttonChen Potential[J].Surface Science,1995,328(1/2):119-128.
    [7]万海波.纳米多层膜高温下微结构的演化[D].上海:上海交通大学,2012.WANG Haibo.Microstructural Evolution of Nano Multilayer Films under High Temperature[D].Shanghai:Shanghai Jiao Tong University,2012.
    [8] MAY,LI H,DENZEL B,et al.Zero-dimensional to Three-dimensional Nanojoining:current Status and Potential Applications[J].RSC Adv.,2016,6:75916-75936.
    [9] ADAMS D P.Reactive Multilayers Fabricated by Vapor Deposition:a Critical Review[J].Thin Solid Films,2015,576:98-128.
    [10] BARRON S C,KELLY S T,KIRCHHOFF J,et al. Self-propagatingReactionsinAl/Zr Multilayers:anomalous Dependence of Reaction Velocity on Bilayer Thickness[J].Journal of Applied Physics,2013,114:223517.
    [11] VINE T A,TINSTON S,FAIRHURST R,et al.Application of Physical Vapour Deposition to the Manufacture of Pyrotechnics[C]//Proc.28th Int.Pyrotechnics Seminar.Adelaide,2001:4-9.
    [12] CLEVENGER L A,THOMPSON C.Explosive Silicidationin Nickel/Amorphous Silicon Multilayer Thin Films[J].The Journal of Physical Chemistry C,1990,67(6):2894.
    [13]WICKERSHAM J C E,POOLE J E.Explosive Crystallization in Zirconium/Silicon Multilayers[J].Journal of Vacuum Science&Technology A:Vacuum,Surfaces,and Films,1988,6(6):1699-1702.
    [14] BARBEE J T W,WEIHS T P.Ignitable Heterogeneous Stratified Structure for the Propagation of an Internal Exothermic Chemical Reaction along an Expanding Wavefront and Method of Making Same:US,5538795[P].1996-07-23.
    [15] BARBEE J T W,WEIHS T P.Method for Fabricating an Ignitable,Heterogeneous,Stratified Structure:US,5547715[P].1996-08-20.
    [16] WANG J Q,SEUNGHA S,HU A M,et al.Geometrical Effects on Sintering Dynamics of Cu-Ag Core-Shell Nanoparticles[J].The Journal of Physical Chemistry C,2016,120:17791-17800.
    [17] CAHILL D,FORD W K,GOODSON K E,et al.Nanoscale Thermal Transport[J].The Journal of Physical Chemistry C,2002,93:793.
    [18] TURLO V,POLITANO O,BARAS F,et al.Dissolution Process at Solid/Liquid Interface in Nanometric Metallic Multilayers:Molecular Dynamics Simulations Versus Diffusion Modeling[J].Acta Materialia,2015,99:363-372.
    [19] POLITANO O,BARAS F.Molecular Dynamics Simulations of Self-propagating Reactions in Ni-Al Multilayer Nanofoils[J].Journal of Alloys and Compounds,2015,652:25-29.
    [20] MISHIN Y,MEHL M J,PAPACONSTANTOPOULOS D A.Embedded-atom Potential for B2-NiAl[J].Physical Review B,2002,65(22):392-397.
    [21] TURLO V,POLITANO O,BARAS F.Microstructure Evolution and Self-propagating Reactions in Ni-Al Nanofoils:an Atomic-scale Description[J].Journal of Alloys and Compounds,2017,708:989-998.
    [22] LEEN A.Multiscale Modeling of Reactive Ni/Al Nanolaminates[D].Baltimore:The Johns Hopkins University,2013.
    [23] FU T,PENG X H,ZHAO Y B,et al.MD Simulation of Effect of Crystal Orientations and Substrate Temperature on Growth of Cu/Ni Bilayer Films[J].Applied Physics A:Materials Science&Processing,2016,122(2):67.
    [24] GAO Y,RUESTES C J,URBASSEK H M,et al.Nanoindentation and Nanoscratchingof Iron:atomistic Simulation of Dislocation Generation and Reactions[J].Computational Materials Science,2014,90:232-240.
    [25] YUAN Lin,XU Zhenhai,SHAN Debin,et al.Molecular Dynamics Study on the Equal Biaxial Tension of Cu/Ag Bilayer Films[J].Applied SurfaceScience,2013,282:450-455.
    [26] WENG Shayuan,NING Huiming,HU Ning,et al.Strengthening Effects of Twin Interface in Cu/Ni Multilayer Thin Films:a Molecular Dynamics Study[J].Materials and Design,2016,111:1-8.
    [27] MOHSEN D,SHAO Shuai,IMAN S,et al.Molecular Dynamics Simulations of Mechanical Behavior in Nanoscale Ceramic:Metallic Multilayer Composites[J].Materials Research Letters,2017,5(5):1-8.
    [28] ZHANG R F,GERMANN T C,WANG J.Role of Interface Structure on the Plastic Response of Cu/Nb Nanolaminatesunder Shock Compression:Non-equilibrium Molecular Dynamics Simulations[J].Scripta Materialia,2013,68(2):114-117.
    [29]孙伟,常明,杨保和,等.分子动力学模拟纳米晶体铜的结构与性质[J].物理学报,1998,47(4):591-597.SUN Wei,CHANG Ming,YANG Baohe,et al.Molecular Dynamics Simulation of the Structure and Properties of Nanocrystalline Copper[J].ActaPhysica Sinica,1998,47(4):591-597.
    [30]文玉华,周富信,刘曰武,等.纳米晶铜单向拉伸变形的分子动力学模拟[J].力学学报,2002,34(1):29-36.WEN Yuhua,ZHOU Fuxin,LIU Yuewu,et al.Molecular Dynamics Simulation of Uniaxial Tensile Deformation of Nanocrystalline Copper[J].Journal of Mechanics,2002,34(1):29-36.
    [31]陈继民.基于纳米连接的纳米线焊接技术进展[J].中国机械工程,2013,24(9):1273-1277.CHEN Jimin.Progress of Nano Welding Technology Based on Nanojoining[J].China Mechanical Engineering,2013,24(9):1273-1277.
    [32] CUI J L,WANG X W,THEOGENE B,et al.Nanojoining of Crossed Ag Nanowires:a Molecular Dynamics Study[J].Journal of Nanoparticle Research,2016,18:175.
    [33] DING Su,TIAN Yanhong,JIANG Zhi,et al.Molecular Dynamics Simulation of Joining Process of Ag-Au Nanowires and Echanical Properties of the Hybrid Nanojoint[J].Applied Surface Science,2015,357:1114-1121.
    [34] PEREIRA Z S,SILVA D E Z.Cold Welding of Gold and Silver Nanowires:a Molecular Dynamics Study[J].The Journal of Physical Chemistry C,2011,115(46):22870-22876.
    [35]李莉,刘民章,李贤.一种新的预焙阳极炭块取样方法[J].碳素科技,2013,32(6):35.LI Li,LIU Minzhang,LI Xian.A New Sampling Method for Prebaked Anode Carbon Block[J].Carbon Science and Technology,2013,32(6):69-71.
    [36] YIN H H,SONG C Q,ZHU H F.Molecular Dynamic Simulation of Welding Process Betweenwo Single-walled Carbon Nanotubes in Axial Direction[J].Nanomaterial&Structure,2009,46(3):148-153.
    [37]赵波.碳纳米管与金属的焊接及复合材料研究[D].上海:上海交通大学,2009.ZHAO Bo.Nanowelding and Composites of Carbon Nanotubes and Metal[D].Shanghai:Shanghai Jiao Tong University,2009.
    [38] BUESSER B,Gr9hn A J,PRATSINISS E.Sintering Rate and Mechanism of TiO2Nanoparticles by Molecular Dynamics[J].The Journal of PhysicalChemistryC, 2011, 115(22):11030-11035.
    [39] MILEK T,ZAHN D.Molecular Simulation of Ag Nanoparticle Nucleation from Solution:Redoxreactions Direct the Evolution of Shape and Structure[J].Nano Letters,2014,14(8):4913-4917.
    [40] ALARIFI H A,ATIS M,zdo anC,et al.Determination of Complete Melting and Surface Premelting Points of Silver Nanoparticles by Molecular Dynamics Simulation[J].The Journal of Physical Chemistry C,2013,117(23):12289-12298.
    [41] WANG J Q,SHIN S,HU A M.Geometrical Effects on Sintering Dynamics of Cu-Ag Core-shell Nanoparticles[J].The Journal of Physical Chemistry C,2016,120:17791-17800.
    [42] LIU H B,CANIZAL G,JIM S,et al.Molecular Dynamics Simulation on Edge Dislocationin the Bulk and Nanoparticles of Iron[J].Computational Materials Science,2003,27(3):333-341.
    [43] ADAMS D P.Reactive Multilayers Fabricated by Vapor Deposition:a Critical Review[J].Thin Solid Films,2015,576:98-128.(编辑陈勇)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700