用户名: 密码: 验证码:
坚硬顶板综放工作面末采切顶护巷水压致裂控制技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:On Hydraulic Fracturing Control Technology of Roof Protection Roadway at the End of Fully Mechanized Caving Face with Hard Roof
  • 作者:杨计先
  • 英文作者:Yang Jixian;Zhangcun Coal Mine of Lu'an Group;
  • 关键词:坚硬顶板 ; 水压致裂 ; 综放工作面末采 ; 切顶护巷 ; 保护煤柱
  • 英文关键词:hard roof;;hydraulic fracturing;;end mining of fully mechanized caving face;;roof cutting and roadway protection;;coal pillar protection
  • 中文刊名:KTGC
  • 英文刊名:Mineral Engineering Research
  • 机构:潞安集团漳村煤矿;
  • 出版日期:2019-05-16 18:42
  • 出版单位:矿业工程研究
  • 年:2019
  • 期:v.34;No.120
  • 语种:中文;
  • 页:KTGC201901004
  • 页数:10
  • CN:01
  • ISSN:43-1493/TD
  • 分类号:33-42
摘要
坚硬顶板具有硬度大、整体性好、难垮落等特点,但同时也导致综放工作面末采期间诸多围岩控制与安全问题.本文以潞安集团漳村煤矿2505综放工作面为工程背景,利用工作面末采切顶护巷水压致裂控制技术,人为控制顶板垮落,改变保护煤柱覆岩结构,得到了最优保护煤柱宽度为70 m,最佳切水力切顶顶板合理破断位置为停采线前方5 m处.现场监测结果表明,切顶后20 d内采区准备巷道顶底板最大下沉量为446 mm,两帮最大移近量为350 mm,支架载荷平均降低了38.8%,达到了保护采区准备巷道、缩小保护煤柱、安全高效回采的目的,为同类型矿井提供借鉴和指导.
        Hard roof has the characteristics of high hardness,good integrity and difficulty to collapse,which leads to many surrounding rock control and safety problems during the final mining period of fully mechanized caving face. Based on the engineering background of 2505 fully mechanized top coal caving face in Zhangcun Coal Mine of Lu'an Group,this paper uses the hydraulic fracturing control technology to control the roof collapse artificially and change the overburden structure of protective pillars. The optimum width of protective pillars is70 m,and the optimum location of reasonable breakage of hydraulic roof cutting is 5 m ahead of the stopping line. The field monitoring results show that the maximum subsidence of roof and floor is 446 mm,the maximum approach of two sides is 350 mm,and the support load is reduced by 38.8% on average within 20 days after roof cutting. The purpose of protecting roadways,reducing protective pillars and safe and efficient mining is achieved,which provides references and guidances for similar mines.
引文
[1]刘长友,曹胜根,钱鸣高,等.综放末采期间的矿压特征[J].煤炭科学技术,1998(5):46-49.
    [2]周辉,渠成堃,黄健利,等.基于模型试验的深部煤层合理停采线结构分析[J].岩石力学与工程学报,2017,36(10):2373-2382.
    [3]孙建,侯化强,王连国.综采工作面停采线合理位置确定[J].煤矿安全,2013,44(3):44-46.
    [4]靳钟铭,徐林生.煤矿坚硬顶板控制[M].北京:煤炭工业出版社,1994:30-35.
    [5]黄炳香,赵兴龙,陈树亮,等.坚硬顶板水压致裂控制理论与成套技术[J].岩石力学与工程学报,2017,36(12):2954-2970.
    [6]崔树江.塔山矿综放工作面停采线合理煤柱宽度实测[J].煤矿安全,2015,46(3):190-193.
    [7]黄炳香,程庆迎,刘长友,等.煤岩体水力致裂理论及其工艺技术框架[J].采矿与安全工程学报,2011,28(2):167-173.
    [8]徐幼平,林柏泉,翟成,等.定向水力压裂裂隙扩展动态特征分析及其应用[J].中国安全科学学报,2011,21(7):104-110.
    [9]徐幼平,林柏泉,朱传杰,等.钻割一体化水力割煤磨料动态特征及参数优化[J].采矿与安全工程学报,2011,28(4):623-627.
    [10]韩龙.综采工作面末采及回撤矿压显现规律与顶板控制技术[J].煤矿安全,2017,48(s1):24-28.
    [11]梁大海.坚硬顶板注水软化机理研究[D].太原:太原理工大学,2006.
    [12]王华.煤矿综采和综放矿压显现对比分析[J].煤炭与化工,2016,39(9):4-6.
    [13]Huang B X,Wang Y Z. Roof weakening of hydraulic fracturing for control of hanging roof in the face end of high gassy coal long wall mining:a case study[J]. Archives of Mining Sciences,2016,61(3):601-615.
    [14]龙威成,赵乐凯,陈冬冬,等.顺煤层定向长钻孔水力压裂煤层增透技术及试验研究[J].河南理工大学学报(自然科学版),2019,38(3):10-15.
    [15]贾文超,张明杰,梁锡明,等.地应力与孔隙压力对定向水力压裂效果影响研究[J].煤炭科学技术,2018,46(12):151-157.
    [16]张振配.坚硬难垮顶板水力压裂初次放顶技术研究[J].煤炭科学技术,2018(s2):86-89.
    [17]王跃权.大埋深矿井工作面双回撤通道水力压裂卸压技术[J].煤炭科学技术,2018(s2):90-93.
    [18]高飞.工作面坚硬顶板注水软化及水压致裂作用分析[J].煤炭与化工,2018,41(6):40-42.
    [19]王镇.燕子山矿水压致裂强制放顶技术应用[J].煤炭与化工,2016,39(10):51-52.
    [20]黄炳香,刘江伟,张权.临空巷道定向压裂坚硬悬顶的断顶线位置[EB/OL].北京:中国科技论文在线[2016-12-07].http://www.paper.edu.cn/releasepaper/content/201612-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700