用户名: 密码: 验证码:
甘肃河西山地土壤有机碳储量及分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Soil Organic Carbon Storage and Distribution Patterns in the Mountainous Areas of the Hexi Region, Gansu, China
  • 作者:张梦旭 ; 刘蔚 ; 朱猛 ; 李若麟
  • 英文作者:Zhang Mengxu;Liu Wei;Zhu Meng;Li Ruolin;Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:土壤有机碳 ; 空间分布 ; 植被类型 ; 河西山地
  • 英文关键词:soil organic carbon;;spatial distribution;;vegetation type;;mountainous areas in the Hexi Region
  • 中文刊名:ZGSS
  • 英文刊名:Journal of Desert Research
  • 机构:中国科学院西北生态环境资源研究院内陆河流域生态水文重点实验室;中国科学院大学;
  • 出版日期:2019-01-24 08:52
  • 出版单位:中国沙漠
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(41771252);; 中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC031);中国科学院寒旱区陆面过程与气候变化重点实验室开放基金项目(LPCC2017005)
  • 语种:中文;
  • 页:ZGSS201904008
  • 页数:9
  • CN:04
  • ISSN:62-1070/P
  • 分类号:67-75
摘要
山地土壤具有强异质性和较高的碳密度,研究山地土壤有机碳的储量、空间分布特征和影响因素,对理解未来气候变化情景下该区土壤碳-大气反馈具有重要意义。河西山地地形复杂,水热梯度明显,是研究土壤有机碳空间格局的理想区域。利用河西山地126个土壤剖面数据,分析了0~100 cm土壤有机碳的储量、空间分布特征及其与环境因素的关系。结果表明:河西山地0~100 cm土壤有机碳密度均值15.04±7.24 kg·m~(-2),区域土壤有机碳储量1.37±0.66 Pg,其中50%储存在高寒草甸和亚高山灌丛草甸。研究区土壤有机碳密度从高到低依次为亚高山灌丛草甸(41.15±18.47 kg·m~(-2))、山地草甸草原(40.26±9.59 kg·m~(-2))、山地森林(34.57±14.52 kg·m~(-2))、高寒草甸(29.19±14.58 kg·m~(-2))、山地草原(19.28±11.33 kg·m~(-2))、荒漠草原(9.83±4.14 kg·m~(-2))、高寒草原(8.59±2.47 kg·m~(-2))、高寒荒漠(5.89±3.18 kg·m~(-2))、草原化荒漠(5.16±3.06 kg·m~(-2))、温带荒漠(5.00±3.35 kg·m~(-2))。土壤有机碳的空间分布与地形和气候因子显著相关。土壤有机碳密度随着海拔的升高呈现出先增加后减少的趋势,阴坡土壤有机碳密度显著高于阳坡和半阴坡。土壤有机碳密度随年平均降水量增多而增多,随年平均温度的升高呈现出先增加后减少的趋势。
        Mountain soil has strong heterogeneity and high carbon density. Studying the storage, spatial distribution patterns and influencing factors of soil organic carbon in mountainous area is of great significance for understanding the soil carbon-atmosphere feedback under the future climate change scenarios. Mountainous areas in the Hexi Region are characterized by complex topography, large gradients of water and heat, thus an ideal area to study the pattern of soil organic carbon and its influencing factors. In this study, 126 soil profiles were used to investigate the storage and spatial distribution of 0-100 cm soil organic carbon and its relationship with environmental factors in mountainous areas in the Hexi Region in Gansu. The results showed that the average soil organic carbon density of 0-100 cm in mountainous areas in the Hexi Region was 15.04±7.24 kg·m~(-2) and the area of soil organic carbon storage was 1.37±0.66 Pg, of which 50% was stored in alpine meadow and sub-alpine shrub meadow zone. Specifically, the soil organic carbon density in different vegetation types decreased as the following order: sub-alpine shrub meadow(41.15±18.47 kg·m~(-2)), mountain meadow steppe(40.26±9.59 kg·m~(-2)), mountain forest(34.57±14.52 kg·m~(-2)), alpine meadow(29.19±14.58 kg·m~(-2)), mountain steppe(19.28±11.33 kg·m~(-2)), desert steppe(9.83±4.14 kg·m~(-2)), alpine steppe(8.59±2.47 kg·m~(-2)), alpine desert(5.89±3.18 kg·m~(-2)), steppe desert(5.16±3.06 kg·m~(-2)), temperate desert(5.00±3.35 kg·m~(-2)). In addition, the spatial distribution of soil organic carbon was significantly correlated with topography and climatic factors. Soil organic carbon tended to increase at first and then decrease with the elevation. The organic carbon density on the shady slopes was significantly higher than that on the sunny and semi-shady slopes. Soil organic carbon density increased with the annual mean precipitation. The relationships between soil organic carbon and mean annual temperature were characterized by an increasing trend at first, then an decreasing trend.
引文
[1] Lal R.Soil C sequestration impacts on global climatic change and food security[J].Science,2004,304:1623-1627.
    [2] 郑聚锋,程琨,潘根兴,等.关于中国土壤碳库及固碳潜力研究的若干问题[J].科学通报,2011,56(26):2162-2173.
    [3] 陈朝,吕昌河,范兰,等.土地利用变化对土壤有机碳的影响研究进展[J].生态学报,2011,31(18):5358-5871.
    [4] Davidson E A,Janssens I A.Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J].Nature,2006,440:165-173.
    [5] Albaladejo J,Ortiz R,Garcia-Franco N,et al.Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain[J].Journal of Soils and Sediments,2013,13:265-277.
    [6] 苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):19-27.
    [7] 方精云,沈泽昊,崔海亭.试论山地的生态特征及山地生态学的研究内容[J].生物多样性,2004,12(1):10-19.
    [8] Chen L F,He Z B,Du J,et al.Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China[J].Catena,2016,137:37-43.
    [9] Baritz R,Seufert G,Montanarella L,et al.Carbon concentrations and stocks in forest soils of Europe[J].Forest Ecology and Management,2010,260(3):262-277.
    [10] Schimel D S,Braswell B H.The role of mid-latitude mountains in the carbon cycle:global perspective and a western US case study[M]//Becker A,Bugmann H.Global Change and Mountain Regions.Netherlands:Springer,2005:449-456.
    [11] 解宪丽,孙波,周慧珍,等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004,41(5):687-699.
    [12] K?rner C,Paulsen J.A world-wide study of high altitude treeline temperatures[J].Journal of Biogeography,2004,31(5):713-732.
    [13] Reichstein M,Bednorz F,Broll G,et al.Temperature dependence of carbon mineralisation:conclusions from a long-term incubation of subalpine soil samples[J].Soil Biology and Biochemistry,2000,32(7):947-958.
    [14] Tewksbury C E,Miegroet H V.Soil organic carbon dynamics along a climatic gradient in a southern Appalachian spruce-fir forest[J].Canadian Journal of Forest Research,2007,37(7):1161-1172.
    [15] Xu X,Zhou Y,Ruan H H,et al.Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains,China[J].Soil Biology and Biochemistry,2010,42(10):1811-1815.
    [16] Zhang Y,Zhao Y C,Shi X Z,et al.Variation of soil organic carbon estimates in mountain regions:a case study from Southwest China[J].Geoderma,2008,146:449-456.
    [17] Hoffmann U,Hoffmann T,Jurasinski G,et al.Assessing the spatial variability of soil organic carbon stocks in an alpine setting (Grindelwald,Swiss Alps)[J].Geoderma,2014,232:270-283.
    [18] Huang Y M,Liu D,An S S.Effects of slope aspect on soil nitrogen and microbial properties in the Chinese Loess region[J].Catena,2015,125:135-145.
    [19] Yimer F,Ledin S,Abdelkadir A.Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains,Ethiopia[J].Geoderma,2006,135:335-344.
    [20] BennieJ,Huntley B,Wiltshire A,et al.Slope,aspect and climate:spatially explicit and implicit models of topographic microclimate in chalk grassland[J].Ecological Modelling,2008,216(1):47-59.
    [21] Badano E I,Cavieres L A,Molina-Montenegro M A,et al.Slope aspect in?uences plant association patterns in the Mediterranean matorral of central Chile[J].Journal of Arid Environments,2005,62(1):93-108.
    [22] 朱猛,刘蔚,秦燕燕,等.祁连山森林草原带坡面尺度土壤有机碳分布[J].中国沙漠,2016,36(3):741-748.
    [23] Post W M,Emanuel W R,Zinke P J,et al.Soil carbon pools and world life zones[J].Nature,1982,298(5870):156-159.
    [24] 张鹏,陈年来,张涛.黑河上游山地青海云杉林土壤有机碳特征及其影响因素[J].中国沙漠,2009,29(3):445-450.
    [25] Longbottom T L,Townsend-Small A,Owen L A,et al.Climatic and topographic controls on soil organic matter storage and dynamics in the Indian Himalaya:potential carbon cycle-climate change feedbacks[J].Catena,2014,119:125-135.
    [26] Fuentes E R,Otaiza R D,Alliende M C,et al.Shrub clumps of the Chilean matorral vegetation:structure and possible maintenance mechanisms[J].Oecologia,1984,62(3):405-411.
    [27] Ganuza A,Almendros G.Organic carbon storage in soils of the Basque Country (Spain):the effect of climate,vegetation type and edaphic variables[J].Biology and Fertility of Soils,2003,37(3):154-162.
    [28] Tsui C C,Chen Z S,Hsieh C F.Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan[J].Geoderma,2004,123(1):131-142.
    [29] 陈隆亨,曲耀光.河西地区水土资源及其合理开发利用[M].北京:科学出版社,1992:1-263.
    [30] 陈隆亨,肖洪浪.河西山地土壤及其利用[M].北京:海洋出版社,2003:1-132.
    [31] 贾文雄.祁连山气候的空间差异与地理位置和地形的关系[J].干旱区研究,2010,27(4):607-615.
    [32] 马倩倩.敦煌市土壤理化性质分析及土壤质量评价[D].西安:陕西师范大学,2013.
    [33] 张剑,王利平,谢建平,等.敦煌阳关湿地土壤有机碳分布特征及其影响因素[J].生态学杂志,2017,36(9):2455-2464.
    [34] 马文瑛,赵传燕,王超,等.祁连山天老池小流域土壤有机碳空间异质性及其影响因素[J].土壤,2014,46(3):426-432.
    [35] 高海宁,张勇,秦嘉海,等.祁连山黑河上游不同退化草地有机碳和酶活性分布特征[J].草地学报,2014,22(2):283-290.
    [36] 赵锐锋,张丽华,赵海莉,等.黑河中游湿地土壤有机碳分布特征及其影响因素[J].地理科学,2013,33(3):363-370.
    [37] 耿增超,姜林,李珊珊,等.祁连山中段土壤有机碳和氮素的剖面分布[J].应用生态学报,2011,22(3):665-672.
    [38] 刘晓晴,马亚丽,常宗强.土壤有机碳/氮对高山草甸水分入渗的影响[J].甘肃科学学报,2014,26(3):50-54.
    [39] 杨万祯,韦春,连兵,等.石羊河流域不同土地利用方式的土壤肥力特征[J].甘肃农业大学学报,2011,46(4):112-117.
    [40] 秦彧.气候变化和人类活动对祁连山多年冻土区高寒草地的影响研究[D].兰州:中国科学院大学,中国科学院寒区旱区环境与工程研究所,2013.
    [41] 王芳.临泽边缘绿洲区土地利用变化对土壤肥力质量的影响[D].兰州:中国科学院大学,中国科学院寒区旱区环境与工程研究所,2007.
    [42] 冯起,苏永红,司建华,等.黑河流域生态水文样带调查[J].地球科学进展,2013,28(2):187-196.
    [43] Chen L Y,Smith P,Yang Y H.How has soil carbon stock changed over recent decades?[J].Global Change Biology,2015,21(9):3197-3199.
    [44] Yang Y H,Fang J Y,Wenhong M A,et al.Soil carbon stock and its changes in northern China's grasslands from 1980s to 2000s[J].Global Change Biology,2010,16(11):3036-3047.
    [45] Ding J Z,Chen L Y,Ji C J,et al.Decadal soil carbon accumulation across Tibetan permafrost regions[J].Nature Geoscience,2017,10(6):420-425.
    [46] 彭守璋,赵传燕,郑祥霖,等.祁连山青海云杉林生物量和碳储量空间分布特征[J].应用生态学报,2011,22(7):1689-1694.
    [47] 孙维侠,史学正,于东升,等.我国东北地区土壤有机碳密度和储量的估算研究[J].土壤学报,2004,41(2):298-300.
    [48] 刘志鹏.黄土高原地区土壤养分的空间分布及其影响因素[D].杨凌:中国科学院教育部水土保持与生态环境研究中心,2013.
    [49] Yang Y H,Fang J Y,Tang Y H,et al.Storage,patterns and controls of soil organic carbon in the Tibetan grasslands[J].Global Change Biology,2008,14:1592-1599.
    [50] Li Z,Jiang X,Pan X Z.Organic carbon storage in soils of tropical and subtropical China[J].Water Air and Soil Pollution,2001,129:45-60.
    [51] Yu D S,Shi X Z,Wang H J,et al.Regional patterns of soil organic carbon stocks in China[J].Journal of Environment Management,2007,85:680-689.
    [52] Ding J Z,Li F,Yang G B,et al.The permafrost carbon inventory on the Tibetan Plateau:a new evaluation using deep sediment cores[J].Global Change Biology,2016,22:2688-2701.
    [53] Rorison I H,Sutton F,Hunt R.Local climate,topography and plant growth in Lathkill Dale NNR.I.A twelve-year summary of solar radiation and temperature[J].Plant,Cell & Environment,1986,9(1):49-56.
    [54] Barry R G.Mountain Weather and Climate[M].Psychology Press,1992.
    [55] Jobbágy E G,Jackson R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation[J].Ecological Applications,2000,10(2):423-436.
    [56] Callesen I,Liski J,Raulund-Rasmussen K,et al.Soil carbon stores in Nordic well-drained forest soils-relationships with climate and texture class[J].Global Change Biology,2003,9(3):358-370.
    [57] Meier I C,Leuschner C.Variation of soil and biomass carbon pools in beech forests across a precipitation gradient[J].Global Change Biology,2010,16(3):1035-1045.
    [58] 柴晓虹,吴永华,钟芳.不同降雨量下人工重建林土壤性状及微生物特性比较[J].中国沙漠,2014,34(6):1576-1583.
    [59] Rodríguez-Murillo J C.Organic carbon content under different types of land use and soil in peninsular Spain[J].Biology and Fertility of Soils,2001,33(1):53-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700