用户名: 密码: 验证码:
锑矿周边稻田土壤垂直剖面锑砷形态与细菌群落结构分布及相互关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution and correlation of antimony and arsenic species and bacterial community structure in vertical profiles of paddy soils around antimony mine
  • 作者:黄博聪 ; 龙健 ; 刘灵飞 ; 廖洪凯 ; 李娟 ; 张菊梅 ; 吴求生
  • 英文作者:HUANG Bocong;LONG Jian;LIU Lingfei;LIAO Hongkai;LI Juan;ZHANG Jumei;WU Qiusheng;Guizhou Provincial Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University;Department of Geography and Environmental Science, Guizhou Normal University;
  • 关键词:稻田土壤剖面 ; Sb和As污染 ; 土壤细菌群落 ; 共生网络分析 ; LEfSe分析
  • 英文关键词:paddy soil profile;;Sb and As pollution;;soil bacterial community;;co-occurrence network analysis;;LEfSe analysis
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:贵州师范大学贵州省山地环境信息系统与生态环境保护重点实验室;贵州师范大学地理与环境科学学院;
  • 出版日期:2018-12-24 14:51
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金委员会-贵州省人民政府喀斯特科学研究中心项目(No.U1612442);; 贵州省科技厅联合基金项目(黔科合LH字[2015]7781号);贵州省科技厅科技平台及人才团队计划项目(黔科合平台人才[2018]5609);; 贵州省喀斯特生态环境保护与治理人才基地项目;; 贵州省教育厅项目(黔教合KY字[2018]040);; 贵州省百层次创新人才计划项目
  • 语种:中文;
  • 页:HJXX201904030
  • 页数:10
  • CN:04
  • ISSN:11-1843/X
  • 分类号:264-273
摘要
为了解稻田土壤微生物对锑(Sb)和砷(As)污染的长期适应机制,本文以贵州省独山半坡锑矿和某锑矿冶炼厂周边稻田土壤为研究对象.采用野外布点和室内分析的方法,利用Illumina高通量测序技术对稻田垂直剖面土壤细菌16S rRNA V3~V4可变区进行测序,分析了土壤微生物的α多样性、物种丰度差异和组成情况,探讨了不同形态Sb和As在tc1(水耕熟化层)、tc2(渗育层)、tc3(犁底层)和tc4(水耕淀积层)的地球化学行为及其对细菌群落结构的影响.结果表明,研究区Sb和As的来源不同,Sb主要来源于大气沉降和人工投放,As则来源于成土母岩.变形菌门(Proteobacteria)和绿弯菌门(Chloroflexi)为各土层的主要优势菌门,具体表现为变形菌门(Proteobacteria)是tc1和tc2的优势菌门,绿弯菌门(Chloroflexi)是tc3和tc4的优势菌门.土壤剖面各土层多样性指数均在tc1达到最大值,在tc3达到最小值且差异不显著.相对重要性分析表明,总As、As(V)、TS和Fe(II)为影响多样性指数的主要因子.LEfSe分析表明,各土层差异指示种在不同分类水平上各不相同且tc1的数量高于tc2、tc3和tc4.如在门水平,tc1的差异指示种为疣微菌门(Verrucomicrobia),tc3为热袍菌门(Thermotogae),tc4为硝化螺旋菌门(Nitrospirae);在纲水平,tc1为α-变形菌纲(α-proteobacteria),tc2为β-变形菌纲(β-proteobacteria),tc3为热袍菌纲(Thermotogae),tc4为硝化螺旋菌纲(Nitrospirae).RDA分析和相对重要性分析表明,总As、As(III)、Sb(V)、总Sb和pH等对细菌门分类水平具有重要影响.共生网络分析进一步表明,Sb(III)和As(V)虽然对群落结构影响相对较小,但与特征性微生物却存在显著相关性,如Sb(III)与Defluviicoccus属显著相关,而As(V)对β-变形菌纲影响较为显著.
        In order to understand the adaptation mechanism of microorganisms to Sb and As pollution in the paddy soil, we took the paddy soil around the Banpo antimony mine and the antimony smelter in Dushan County, Guizhou Province as the research objects. Methods of field layout and indoor analysis, the V3~V4 variable region of bacterial 16 S rRNA gene was sequenced using Illumina high-throughput sequencing technology. We analyzed the soil alpha diversity, species abundance and composition, and studied the geochemical behaviors of different fractions of Sb and As in tc1(hydroponic maturing layer), tc2(seepage layer), tc3(plow layer),and tc4(hydroponic layer) of paddy soil profile. The results showed that the sources of Sb and As were different, Sb was mainly derived from atmospheric deposition and mining activity, while As was derived from the parent rock. Proteobacteria and Chloroflexi were the dominant phylums in the soil layer. Proteobacteria had higher relative abundance in both tc1 and tc2 layers, whereas Chloroflexi had higher relative abundance in tc3 and tc4 layers. The highest alpha diversity index of soil bacterial community in soil profile was found in the tc1, and whereas the lowest was observed in the tc3, although the difference was not significant. LEfSe analysis showed that the differences of indicator species were varied between layers at different classification levels and the number of tc1 was higher than that of tc2, tc3 and tc4.For example, the indicator species of tc1 was the Verrucomicrobia, tc3 was the Thermotogae, and the tc4 was the Nitrospirae at the phylum level; α-proteobacteria, β-proteobacteria, Thermotogae, Nitrospira were the indicator species in tc1, tc2, tc3, tc 4, respectively, at the class level. RDA and relative importance analysis showed that total As, As(III), Sb(V), total Sb, and pH played important roles in phylum classification. The co-occurrence network analysis further showed that although Sb(III) and AS(V) had relatively little effect on community structure, they had significant correlation with characteristic microorganisms. For example, Sb(III) was significantly related to Defluviicoccus, while As(V) had a significant effect on the proteobacteria.
引文
Ashley P M,Craw D,Graham B P,et al.2003.Environmental mobility of antimony around mesothermal stibnite deposits,New South Wales,Australia and southern New Zealand[J].Journal of Geochemical Exploration,77 (1):1-14
    鲍士旦.2000.土壤农化分析(第3版)[M].北京:中国农业出版社
    蔡林,王革娇.2009.抗砷性微生物及其抗砷分子机制研究进展[J].微生物学通报,36(8):1253-1259
    Cai Y,Li L,Zhang H.2015.Kinetic modeling of pH-dependent antimony(V) sorption and transport in iron oxide-coated sand[J].Chemosphere,138:758-764
    杜璨,许晨阳,王强,等.2017.秦岭红桦林土壤细菌群落剖面分布特征及其影响因素[J].环境科学,38(7):3010-3019
    Edwards K J,Rogers D R,Wirsen C O,et al.2003.Isolation and characterization of novel psychrophilic,neutrophilic,Fe-Oxidizing,chemolithoautotrophic α- and γ-proteobacteria from the deep sea[J].Applied and Environmental Microbiology,69(5):2906-2913
    Fan M C,Lin Y B,Huo H B,et al.2016.Microbial communities in riparian soils of a settling pond for mine drainage treatment[J].Water Research,96:198-207
    Filella M,Belzile N,Chen Y W.2002.Antimony in the environment: a review focused on natural waters: II.Relevant solution chemistry[J].Earth-Science Reviews,59(1/4): 265-285
    Fu Z,Wu F,Mo C,et al.2016.Comparison of arsenic and antimony biogeochemical behavior in water,soil and tailings from Xikuangshan,China[J].Science of the Total Environment,539: 97-104
    Fuentes E,Pinochet H,Gregori I D,et al.2003.Redox speciation analysis of antimony in soil extracts by hydride generation atomic fluorescence spectrometry [J].Spectrochimica Acta Part B: Atomic Spectroscopy,58(7):1279-1289
    Ge Z F,Wei C Y.2013.Simultaneous analysis of SbIII,SbV and TMSb by high performance liquid chromatography-inductively coupled plasma-mass spectrometry detection: Application to antimony speciation in soil samples[J].Journal of Chromatographic Science,51(5):391-399
    Hamamura N,Fukushima K,Itai T.2013.Identification of antimony- and arsenic-oxidizing bacteria associated with antimony mine tailing[J].Microbes and Environments,28(2):257-263
    He M C,Wang X Q,Wu F C,et al.2012.Antimony pollution in China[J].Science of the Total Environment,421:41-50
    He M,Wang N,Long X,et al.2019.Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects[J].Journal of Environmental Sciences,75:14-39
    Kaci A,Petie F,Fournier M,et al.2016.Diversity of active microbial communities subjected to long-term exposure to chemical contaminants along a 40-year-old sediment core[J].Environmental Science and Pollution Research,23(5):4095-4110
    Li J X,Wang Q,Li M S,et al.2015.Proteomics and genetics for identification of a bacterial antimonite oxidase in agrobacterium tumefaciens[J].Environmental Science & Technology,49(10):5980-5989
    Li J,Wang Q,Zhang S Z,et al.2013.Phylogenetic and genome analyses of antimony-oxidizing bacteria isolated from antimony mined soil[J].International Biodeterioration & Biodegradation,76:76-80
    Liu C P,Yu H Y,Liu C S,et al.2015.Arsenic availability in rice from a mining area: is amorphous iron oxide-bound arsenic a source or sink? [J].Environmental Pollution,199:95-101
    Liu J,He X X,Lin X R,et al.2015.Ecological effects of combined pollution associated with E-waste recycling on the composition and diversity of soil microbial communities[J].Environmental Science & Technology,49(11):6438-6447
    Luo G S,Shi Z J,Wang H,et al.2011.Skermanella stibiiresistens sp.nov.,a highly antimony-resistant bacterium isolated from coal-mining soil,and emended description of the genus Skermanella[J].International Journal of Systematic and Evolutionary Microbiology,62(6):1271-1276
    刘灵飞,李娟,龙健,等.2014.喀斯特山区晴隆锑矿不同介质砷锑铋污染特征研究[J].贵州师范大学学报(自然科学版),32(4):83-87
    刘灵飞,龙健,万洪富,等.2013.贵州喀斯特山区锑冶炼厂对农业土壤污染特征的影响及风险评价[J].土壤,45(6):1036-1047
    刘沙沙,付建平,蔡信德,等.2018.重金属污染对土壤微生物生态特征的影响研究进展[J].生态环境学报,27(6):1173-1178
    卢云祥.1997.独山岩溶地下水开发利用初探[J].人民珠江,(5):9-11
    Merlin C,Devers M,Béguet J,et al.2016.Evaluation of the ecotoxicological impact of the organochlorine chlordecone on soil microbial community structure,abundance,and function[J].Environmental Science and Pollution Research,23(5): 4185-4198
    牟山.2017.水稻土中性微氧型亚铁氧化机制研究[D].成都:电子科技大学
    宁增平,肖唐付,周连碧,等.2009.锑矿区土壤污染初探与土壤环境质量风险评估[J].矿物学报,29(S1):402-404
    Romaniuk R,Giuffré L,Costantini A,et al.2011.Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems[J].Ecological Indicators,11(5):1345-1353
    Sobolev D,Roden E.2014.Characterization of a neutrophilic,chemolithoautotrophic Fe(II)-Oxidizing β-proteobacterium from freshwater wetland sediments[J].Geomicrobiology Journal,21(1):1-10
    Sun W M,Xiao E Z,Xiao T F,et al.2017.Response of soil microbial communities to elevated antimony and arsenic contamination indicates the relationship between the innate microbiota and contaminant fractions[J].Environmental Science Technology,51(16):9165-9175
    Tamura H,Goto K,Yotsuyan T,et al.1974.Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III) [J].Talanta,21(4):314-318
    Terry L R,Kulp T R,Wiatrowski H,et al.2015.Microbiological oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments[J].Applied Environmental Microbiology,81(24):8478-8488
    唐敏,张焕祯,李亮.2010.砷污染土壤柠檬酸萃取修复技术研究[J].环境污染与防治,32(12):31-34+58
    Wang N N,Zhang S H,He M C.2016.Bacterial community profile of contaminated soils in a typical antimony mining site[J].Environmental Science & Pollution Research International,25(6):1-12
    Wang X Q,He M C,Lin C Y,et al.2012.Antimony(III) oxidation and antimony(V) adsorption reactions on synthetic manganite[J].Chemie Der Erde-Geochemistry,72:41-47
    王丽,杨爱江,邓秋静,等.2017.贵州独山锑矿区土壤-头花蓼系统中重金属的分布特征[J].生态学杂志,36(12):3545-3552
    王年,鲁小璐,邬梦晓俊,等.2017.微生物氧化As(Ⅲ)和Sb(Ⅲ)的研究进展[J].微生物学通报,44(3):689-700
    项萌,张国平,李玲,等.2012.广西铅锑矿冶炼区土壤剖面及孔隙水中重金属污染分布规律[J].环境科学,33(1):266-272
    Xi J H,He M C,Lin C Y.2011.Adsorption of antimony(III) and antimony(V) on bentonite: Kinetics,thermodynamics and anion competition[J].Microchemical Journal,97(1):85-91
    Xiao E Z,Krumins V,Tang S,et al.2016.Correlating microbial community profiles with geochemical conditions in a watershed heavily contaminated by an antimony tailing pond[J].Environmental Pollution,215:141-153
    Xiao E Z,Krumins V,Xiao T F,et al.2017.Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic[J].Environmental Pollution,221:244-255
    Zhang C,Nie S,Liang J,et al.2016.Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure[J].Science of the Total Environment,557:785-790

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700