用户名: 密码: 验证码:
高强度Ti-Cu-Fe-Si-Nb树枝晶-超细晶复合材料的结构与力学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and Mechanical Properties of Ti-Cu-Fe-Si-Nb Dendrite-Ultrafine Grained Composites with High Strength
  • 作者:王昊杰 ; 刘滢 ; 逄淑杰 ; 张涛
  • 英文作者:Wang Haojie;Liu Ying;Pang Shujie;Zhang Tao;Key Laboratory of Aerospace Materials and Performance (Ministry of Education) ,School of Materials Science and Engineering,Beihang University;School of Physics and Nuclear Energy Engineering,Beihang University;
  • 关键词:钛合金 ; 复合材料 ; 微观结构 ; 力学性能
  • 英文关键词:titanium alloys;;composite;;microstructure;;mechanical properties
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:北京航空航天大学材料科学与工程学院;北京航空航天大学物理科学与核能工程学院;
  • 出版日期:2018-03-12 09:35
  • 出版单位:稀有金属
  • 年:2019
  • 期:v.43;No.274
  • 基金:国家自然科学基金青年基金项目(51701008);; 中国博士后科学基金项目(2017M620575)资助
  • 语种:中文;
  • 页:ZXJS201901002
  • 页数:7
  • CN:01
  • ISSN:11-2111/TF
  • 分类号:28-34
摘要
通过合金成分设计和铜模铸造开发出了不含高生物毒性元素Ni且具有高强度和良好室温塑性的Ti_(64)Cu_(25-x)Fe_(10)Si_1Nb_x(x=1,3,5,7;%,原子分数)树枝晶-超细晶结构复合材料,并研究了Nb元素含量对该系合金微观结构和力学性能的影响。研究结果表明, Ti_(64)Cu_(25-x)Fe_(10)Si_1Nb_x(x=1, 3, 5, 7)合金由β-Ti相、亚微米级CuTi_2和CuTi_3相组成。随着Nb元素含量的增加,合金中β-Ti相的体积分数增大,且当Nb含量为5%和7%时,β-Ti相呈枝晶状且分布较均匀。该系合金表现出高压缩断裂强度和硬度,分别为2125~2230 MPa和HV 505~520;压缩塑性应变为3.4%~14.3%,随着Nb含量的提高而增大。因此,通过Nb元素合金化能够有效调控Ti-Cu-Fe-Si-Nb系合金的相组成和力学性能,所开发的Ti-Cu-Fe-Si-Nb合金具有作为手术器械材料在生物医用领域应用的前景。
        Ti_(64)Cu_(25-x)Fe_(10)Si_1Nb_x(x=1,3,5,7; %, atom fraction) dendrite-ultrafine grained composites free from biotoxic elements, exhibiting high strength and large plasticity at room temperature, were developed by composition design and copper mold casting. The influence of Nb content on microstructure and mechanical properties was investigated. It was found that the Ti_(64)Cu_(25-x)Fe_(10)Si_1Nb_x(x=1,3,5,7) alloys consisted of β-Ti phase, submicron CuTi_2 phase and CuTi_3 phase. With Nb contentincreasing, the volume fraction of β-Ti phase increased. When the Nb content was 5% and 7%, the β-Ti phase presented as dendrite and distributed evenly. The Ti-based alloys exhibited high compressive strength and hardness, which were 2125~2230 MPa and HV 505~HV 520, respectively. The plastic strain of the alloys was 3.4%~14.3%, which increased with Nb content increasing. Therefore, it was effective to tailoring the phase constituent and mechanical properties through Nb alloying. The Ti-Cu-Fe-Si-Nb alloys were promising for surgical devices materials in biomedical application.
引文
[1] Ma E. Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys [J]. The Journal of the Minerals, Metals and Materials Society, 2006, 58(4): 49.
    [2] Koch C C, Youssef K M, Scattergood R O, Murty K L. Breakthroughs in optimization of mechanical properties of nanostructured metals and alloys [J]. Advanced Engineering Materials, 2005, 7(9): 787.
    [3] Kumar K S, Swygenhoven H V, Suresh S. Mechanical behavior of nanocrystalline metals and alloys [J]. Acta Materialia, 2003, 51(19): 5743.
    [4] Kim K B, Das J, Xu W, Zhang Z F, Eckert J. Microscopic deformation mechanism of a Ti66.1Nb13.9Ni4.8Cu8Sn7.2 nanostructure-dendrite composite [J]. Acta Materialia, 2006, 54(14): 3701.
    [5] Eckert J, Das J, Kim K B, Baier F, L?ser W, Calin M, Zhang Z F, Gerbert A. Deformation behavior of a Ti66Cu8Ni4.8Sn7.2Nb14 nanostructured composite containing ductile dendrites [J]. Journal of Alloys and Compounds, 2007, 434(2): 13.
    [6] He G, Eckert J, L?ser W, Schultz L. Novel Ti-based nanostructure-dendrite composite with enhanced plasticity [J]. Nature Materials, 2003, 2(1): 33.
    [7] He G, L?ser W, Eckert J. In situ formed Ti-Cu-Ni-Sn-Ta nanostructure-dendrite composite with large plasticity [J]. Acta Materialia, 2003, 51(17): 5223.
    [8] He G, Eckert J, Dai Q L, Sui M L, L?ser W, Hagiwara M, Ma E. Nanostructured Ti-based multi-component alloys with potential for biomedical applications [J]. Biomaterials, 2003, 24(28): 5115.
    [9] Kühn U, Mattern N, Gebert A, Kusy M, Siegel U, Schultz L. Ductile Ti-based nanocrystalline matrix composites [J]. Intermetallics, 2006, 14(8): 978.
    [10] Xie G Q, Qin F X, Zhu S L. Recent progress in Ti-based metallic glasses for application as biomaterials [J]. Materials Transactions, 2013, 54(8): 1314.
    [11] Inoue A, Kimura H M, Zhang T. High-strength aluminum-and zirconium-based alloys containing nanoquasicrystalline particles [J]. Materials Science and Engineering A, 2000, 294(1): 727.
    [12] Inoue A, Zhang W, Zhang T, Kurosaka K. High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems [J]. Acta Materialia, 2001, 49(14): 2645.
    [13] Zhang Z F, Eckert J, Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass [J]. Acta Materialia, 2003, 51(4): 1167.
    [14] Li C Y, Kou S Z, Zhao Y C, Yuan X P, Yuan Z Z. Mechanical properties of Zr-based bulk metallic glasses with different Al contents [J]. Chinese Journal of Rare Metals, 2015, 39(4): 300.(李春燕, 寇生中, 赵燕春, 袁小鹏, 袁子洲. Al含量对Zr基块体非晶合金力学性能的影响 [J]. 稀有金属, 2015, 39(4): 300.)
    [15] He G, Eckert J, L?ser W, Hagiwara M. Composition dependence of the microstructure and the mechanical properties of nano/ultrafine-structured Ti-Cu-Ni-Sn-Nb alloys [J]. ActaMaterialia, 2004, 52(10): 3035.
    [16] Zhao Y C, Kou S Z, Yuan X P, Li C Y, Pu Y L, Xu J. Microstructure and mechanical properties of Ti-based bulk amorphous alloys strengthened and toughened by shape-memory crystals [J]. Chinese Journal of Rare Metals, 2015, 39(1): 29.(赵燕春, 寇生中, 袁小鹏, 李春燕, 蒲永亮, 徐娇. 形状记忆晶相强韧化Ti基非晶复合材料的组织和力学性能 [J]. 稀有金属, 2015, 39(1): 29.)
    [17] Zhu S L, Wang X M, Inoue A. Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters of up to 1 cm [J]. Intermetallics, 2008, 16(8): 1031.
    [18] Liu Y, Wang G, Li H F, Pang S J, Chen K W, Zhang T. Ti-Cu-Zr-Fe-Sn-Si-Sc bulk metallic glasses with good mechanical properties for biomedical applications [J]. Journal of Alloys and Compounds, 2016, 679: 341.
    [19] Pang S J, Liu Y, Li H F, Sun L L, Li Y, Zhang T. New Ti-based Ti-Cu-Zr-Fe-Sn-Si-Ag bulk metallic glass for biomedical applications [J]. Journal of Alloys and Compounds, 2015, 625: 323.
    [20] Wang T, Wu Y D, Si J J, Cai Y H, Chen X H, Hui X D. Novel Ti-based bulk metallic glasses with superior plastic yielding strength and corrosion resistance [J]. Materials Science and Engineering A, 2015, 642: 297.
    [21] Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications [M]. Weinheim: Wiley VCH Verlag, 2003. 20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700