用户名: 密码: 验证码:
伸展褶劈理地质现象、成因机制及其地质意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Occurrences, Formational Mechanisms and Significances of Extensional Crenulation Cleavage
  • 作者:刘江
  • 英文作者:Liu Jiang;Xi′an Center of China Geological Survey;Key Laboratory for Geo-hazards in Loess Area,MNR;
  • 关键词:伸展褶劈理 ; 成因机制 ; 地质意义
  • 英文关键词:extensional crenulation cleavage;;formational mechanism;;geological significance
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:中国地质调查局西安地质调查中心;自然资源部黄土地质灾害重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:地质科技情报
  • 年:2019
  • 期:v.38;No.185
  • 基金:国家自然科学基金项目(41402181);; 中国地质调查局地质调查项目(DD20190294)
  • 语种:中文;
  • 页:DZKQ201902001
  • 页数:13
  • CN:02
  • ISSN:42-1240/P
  • 分类号:7-19
摘要
伸展褶劈理(C′)是韧性剪切带最主要的组构之一,也是认识剪切带演化过程的重要线索。从地质现象、成因机制以及构造地质意义3个方面对30多年来C′的研究进行综述。(1)C′以脆性破裂面或韧性剪切的形式、呈间隔性分布出现在具有各向异性结构特征的岩石中(如糜棱岩),并低角度切割S面理。一般仅出现一组近平行的C′,个别情况下,还出现多组或共轭组(简写为C″)。共轭伸展褶劈理关于S面理对称,S面理平分它们的锐夹角。C′的几何参数,包括C′的密度、C′之间的间隔以及C′分别与C面理和S面理之间的夹角,均表现出接近主滑移面时增大或减小的趋势。观察结果表明,C′形成于脆-韧性转换阶段,例如韧性剪切带演化后期阶段。(2)基于C′地质现象,结合假设条件,目前有多种关于C′的成因机制,大概分为4类:①C′为脆性破裂面,并在形成之后发生旋转;②C′发生于塑性变形阶段,对应具有特定含义的物理方向,例如塑性滑移线、特征向量或最大剪切应变速率;③C′是剪切带局部应变分解,即不稳定变形的结果;④C′初始角度具有优选方位的特点,理论推导得出,C′形成于最大有效力矩方向。(3)C′是韧性剪切带运动学研究的重要标志体,其几何特征被用于指示运动学方向和估算运动学涡度(即剪切变形中纯剪切与简单剪切的相对贡献)。一般认为,C′形成于脆-韧性或韧-脆性转换变形阶段,是应变局部化的表现,可能代表了地震成核的初始过程。在区域尺度,增厚地壳的中地壳层位在重力作用下出现低角度C′,向上扩展并发育为低角度拆离断层;低角度拆离断层(韧性剪切带)内部C′可扩展为切割韧性剪切带的高角度正断层。青藏高原内部共轭走滑断裂系与共轭C′具有相似的几何样式,其挤压方向(即欧亚大陆与印度大陆碰撞方向)正对共轭走滑系钝夹角。
        Extensional crenulation cleavages(C′) are one of the main kinds of fabrics present to ductile shear zones, which plays a potential role to understand the evolutional processes of a ductile shear zone. We review the progress of researches on the occurrences, formation mechanisms and structural significances of the C′ in this paper.(1)C′ usually appears as spaced cleavages in anisotropic rocks(like mylonite) and cuts the existing S-foliation at a direction of a low angle to the S-foliation. In most cases, C′ occurs in one parallel group but sometimes in conjugate groups and even in several groups. Two groups of C′ are symmetric about the S-foliation and the acute angle of the conjugates groups is bisected by the S-foliation. Statistics suggest that an increasing or lowering trend exists on the geometrical parameters of C′, such as density, space, the angles between C′ and S-foliation and C′ and C-foliation away from the principal shear plane. Most observations show that C′ forms in the ductile-brittle transition, such as the late stage of a ductile shear event.Based on the geological occurrence of the C′ and some hypothesis, multi formation mechanisms of the C′ have been proposed. These mechanisms suggest that the C′ forms in a special direction of ① brittle fracture, ②slip lines, eigenvectors and maximum shear rate during stable plastic deformation,③strain partition due to locally unstable deformation and ④ maximum effective moment.(3)The geological significances of C′ have been well discussed. C′ is a useful kinematic marker for ductile shear zones. Its geometrical characteristics can be applied to indicate the shear direction and estimate the vorticity of shear deformation of a ductile shear zone. It is well recognized that C′ usually develops during a brittle-ductile transition or ductile-brittle transition, so the C′ may represent the initial nucleation of an earthquake. At regional scale, low angle C′ forms subject to the gravity in the middle level of thickened crust can extend into a low angle detachment fault. C′ in the ductile shear zone of a detachment fault develops into high angel normal faults. There is also a geometric similarity between the striking-slip fault system in Tibet Plateau and conjugate C′ whose obtuse intersection angles face to the direction of India-Eurasian continent collision.
引文
[1] Platt J P,Vissers R L M.Extensional structures in anisotropic rocks[J].Journal of Structural Geology,1980,24(4):397-410.
    [2] White S H.Large strain deformation: Report on a tectonic studies group discussion meeting held at imperial college,London on 14 November 1979[J].Journal of Structural Geology,1979,1(4):333-339.
    [3] Simpson C,Schmid S M.Evaluation of criteria to deduce the sense of movement in sheared rocks[J].Bulletin of Geological Society of America,1983,94(11):1281-1288.
    [4] Agard P,Augier R,Monié P.Shear band formation and strain localization on a regional scale:Evidence from anisotropic rocks below a major detachment (Betic Cordilleras,Spain)[J].Journal of Structural Geology,2011,33:114-131.
    [5] White S H,Burrows S E,Carreras J,et al.On mylonites in ductile shear zones[J].Journal of Structural Geology,1980,2(1/2):175-187.
    [6] Passchier C W,Trouw R A.Microtectonics[M].Heidelberg Springer,2005:366.
    [7] Michibayashi K,Murakami M.Development of a shear band cleavage as a result of strain partitioning[J].Journal of Structural Geology,2007,29(6):1070-1082.
    [8] Little T A,Holcombe R J,Ilg B R.Kinematics of oblique collision and ramping inferred from microstructures and strain in middle crustal rocks,central Southern Alps,New Zealand[J].Journal of Structural Geology,2002,24(1):219-239.
    [9] Vauchez A.The development of discrete shear-zones in a granite:Stress,strain and changes in deformation mechanisms[J].Tectonophysics,1987,133(1):137-156.
    [10] Blenkinsop T G,Treloar P J.Geometry,classification and kinematics of S-C fabrics[J].Journal of Structural Geology,1995,17(3):397-408.
    [11] Ponce de Leon M I,Choukroune P.Shear zones in the Iberian arc[J].Journal of Structural Geology,1980,2(1/2):63-68.
    [12] Pray J R,Secor D T.Rotation of fabric elements in convergent shear zones,with examples from the southern Appalachians[J].Journal of Structural Geology,1997,19(8):1023-1036.
    [13] Dennis A J,Secor D T.A model for the development of crenulations in shear zones with applications from the Southern Appalachian Piedmont[J].Journal of Structural Geology,1987,9(7):809-817.
    [14] Kurz G A,Northrup C J.Structural analysis of mylonitic rocks in the Cougar Creek Complex,Oregon-Idaho using the porphyroclast hyperbolic method,and potential use of SC′-type extensional shear bands as quantitative vorticity indicators[J].Journal of Structural Geology,2008,30(8):1005-1012.
    [15] Gillam B G,Little T A,Smith E,et al.Extensional shear band development on the outer margin of the Alpine mylonite zone,Tatare Stream,Southern Alps,New Zealand[J].Journal of Structural Geology,2013,54:1-20.
    [16] Gillam B G,LittleT A,Smith E,et al.Reprint of Extensional shear band development on the outer margin of the Alpine mylonite zone,Tatare Stream,Southern Alps,New Zealand[J].Journal of Structural Geology,2014,64:115-134.
    [17] Lister G S,Snoke A W.S-C mylonites[J].Journal of Structural Geology,1984,6(6):617-638.
    [18] Behrmann J H.A precautionary note on shear bands as kinematic indicators[J].Journal of Structural Geology,1987,9(5/6):659-666.
    [19] Charvet J,Shu Liangshu,Laurent-Charvet S.Paleozoicstructural and geodynamic evolution of eastern Tianshan (NW China):Welding of the Tarim and Junggar plates[J].Episodes,2007,30(3):162-186.
    [20] Little T A,Hacker B R,Gordon S M,et al.Diapiric exhumation of Earth’s youngest (UHP) eclogites in the gneiss domes of the D’Entrecasteaux Islands,Papua New Guinea[J].Tectonophysics,2011,510:39-68.
    [21] 刘江,张进江,郭磊,等.大青山伸展拆离断层运动学涡度研究及构造指示意义[J].大地构造与成矿学,2011,35(1):1-11.
    [22] Zheng Yadong,Wang Tao,Ma Mingbo,et al.Maximum effective moment criterion and the origin of low-angle normal faults[J].Journal of Structural Geology,2004,26(12):271-285.
    [23] Simpson C,De Paor D G.Strain and kinematic analysis in general shear zones[J].Journal of Structural Geology,1993,15(1):1-20.
    [24] Law R D,Knipe R J,Dayan H.Strain path partitioning within thrust sheets:Microstructural and petrofabric evidence from the Moine Thrust at Loch Eriboll,northwest Scotland[J].Journal of Structural Geology,1984,6(5):477-497.
    [25] Casas J M.Shear bands and related extensional structures in a mylonitized quartz dyke[J].Journal of Structural Geology,1986,8(6):693-699.
    [26] Harris L B,Cobbold P R.Development of conjugate shear bands during bulk simple shearing[J].Journal of Structural Geology,1985,7(1):37-44.
    [27] 刘江,张进江,郭磊,等.内蒙古呼和浩特变质核杂岩拆离断层糜棱岩40Ar/39Ar定年[J].岩石学报,2014,30(7):1899-1908.
    [28] Henry C,Michard A,Chopin C.Geometry and structural evolution of ultra-high pressure and high pressure rocks from the Dora Maira massif,Western Alps[J].Journal of Structural Geology,1993,15(8):965-981.
    [29] Lin Aiming.S-C fabrics developed in cataclastic rocks from the Nojima fault zone,Japan and their implications for tectonic history[J].Journal of Structural Geology,2001,23(6/7):1167-1178.
    [30] Yenes M,Monterrubio S,Nespereira J,et al.Geometry and kinematics of a landslide surface in tertiary clays from the Duero Basin (Spain) [J].Engineering Geology,2009,104(1/2):41-54.
    [31] Wilson C J L.Shear bands,crenulations and differentiated layering in ice-mica models[J].Journal of Structural Geology,1984,6(3):303-319.
    [32] Shimamoto T.The origin of S-C mylonites and a new fault-zone model[J].Journal of Structural Geology,1989,11(1/2):51-64.
    [33] Williams P F,Price G P.Origin of kink bands and shear-band cleavage in shear zone:An experimental study[J].Journal of Structure Geology,1990,12(2):145-164.
    [34] Dell′angelo L N,Tullis J.Fabric development in experimentally sheared quartzites[J].Tectonophysics,1989,169(1/3):1-21.
    [35] Bos B,Spiers C J.Experimental investigation into the microstructural and mechanical evolution of phyllosilicate-bearing fault rock under condition favouring pressure solution[J].Journal of Structural Geology,2001,23(8):1187-1202.
    [36] Passchier C W.The generation of ductile and brittle shear bands in a low-angle mylonite zone[J].Journal of Structural Geology,1984,6(3):273-281.
    [37] Platt J P,Behrmann J H.Structural and fabrics in a crustal-scale shear zone,Betic Cordillera,SE Spain[J].Journal of Structural Geology,1986,8(1):15-33.
    [38] 郑亚东,王涛.中蒙边界区中生代推覆构造域伸展垮塌作用的运动学和动力学分析[J].中国科学:地球科学,2005,35(4):291-303
    [39] Passchier C W.Geometric constraints on the development of shear bands in rocks[J].Geologie En Mijnbouw,1991,70:203-211.
    [40] Bobyarchick A R.The eigenvalues of steady state flow in Mohr space[J].Tectonophysics,1986,122(1/2):35-51.
    [41] Platt J P.Secondary cleavages in ductile shear zones[J].Journal of Structural Geology,1984,6(4):439-442.
    [42] Jiang Dazhi.Flow variation in layered rocks subjected to bulk flow of various kinematic vorticities:Theory and geological implications[J].Journal of Structural Geology,1994,16(8):1159-1172.
    [43] DePaor D B,Means W D.Mohr circles of the first and second kind and their use to representtensor operations[J].Journal of Structural Geology,1984,6(6):693-701.
    [44] Zhang Jinjiang,Zheng Yadong.Polar Mohr const ructions for strain analysis in general shear zones[J].Journal of Structural Geology,1997,19(5):745-748.
    [45] 刘江,张进江,张波.极摩尔圆法计算二维平均运动学涡度[J].地质科学,2012,47(1):13-21.
    [46] DePaor D G.Orthographic analysis of geologic structures:I.Deformation theory[J].Journal of Structural Geology,1983,5(3/4):255-278.
    [47] Ebert A,Herwegh M,Evans B,et al.Microfabrics in carbonate mylonites along a large-scale shear zone (Helvetic Alps)[J].Tectonophysics,2007,444(1/4):1-26.
    [48] Law R D,Searle M P,Simpson R L.Strain,deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab,Everest Massif Tibet[J].Journal of the Geological Society,2004,161(2):305-320.
    [49] Tikoff B,Fossen H.The limitations of three-dimensional kinematic vorticity analysis[J].Journal of Structural Geology,1995,17(12):1771-1784.
    [50] Weijermars R.The role of stress in ductile deformation[J].Journal of Structural Geology,1991,13(9):1061-1078.
    [51] Weijermars R.Taylor-mill analogues for patterns of flow and deformation in rocks[J].Journal of Structural Geology,1998,20(1):77-92.
    [52] Sullivan W A.Kinematic significance of L tectonites in the footwall of a major terrane-bounding thrust fault,Klamath Mountains,California,USA[J].Journal of Structural Geology,2009,31(10):1197-1211.
    [53] 王新社,郑亚东,王涛.内蒙赤峰南部楼子店韧性剪切带应变与剪切作用类型[J].中国科学:地球科学,2007,37(2):160-166.
    [54] Zheng Yadong,Wang Tao.Kinematics and dynamics of the Mesozoic orogeny and late-orogenic extensional collapse in the Sino-Mongolian border areas[J].Science in China:Series D-Earth Sciences,2005,48(7):849-862.
    [55] Gasco I,Gattiglio M,Borghi A.Structural evolution of different tectonic units across the Austroalpine-Penninic boundary in the middle Orco Valley (Western Italian Alps)[J].Journal of Structural Geology,2009,31(3):301-314.
    [56] Lin Aiming.Fossil earthquakes:The formation and preservation of pseudotachylytes[M]:Berlin,Heidelberg:Springer-Verlag,2008.
    [57] Passchier C W.Pseudotachylyte and the development of ultramylonite bands in the Saint-Barthelemy Massif,French Pyrenees[J].Journal of Structural Geology,1982,4(1):69-79.
    [58] Swanson M T.Fault structure,wear mechanisms and rupture processes in pseudotachylyte generation[J].Tectonophysics,1992,204(3/4):223-242.
    [59] Byerlee J.Friction of rocks[J].Pageoph,1978,116:615-626.
    [60] Sibson R H.Rupture nucleation on unfavorably oriented faults[J].Bulletin of Seismological Society of America,1990,80(6):1580-1604.
    [61] Davis G A,Darby B J.Early Cretaceous overprinting of the Mesozoic Daqing Shan fold-and-thrust belt by the Hohhot metamorphic core complex,Inner Mongolia,China[J].Geoscience Frontiers,2010,1:1-20.
    [62] Davis G A,Darby B J,Zheng Yadong,et al.Geometric and temporal evolution of an extensional detachment fault,Hohhot metamorphic core complex,Inner Mongolia,China[J].Geology,2002,30:1003-1006.
    [63] Zheng Yadong,Wang Shizheng,Wang Yufang.An enormous thrust nappe and extensional metamorphic core complex newly discovered in Sino-Mongolian boundary area[J].Science in China,1991,34:1145-1154.
    [64] Wang Tao,Guo Lei,Zheng Yadong,et al.Timing and processes of Late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton:Mainly constrained by zircon U-Pb ages from metamorphic core complexes[J].Lithos,2012,154:315-345.
    [65] Wang Tao,Zheng Yadong,Zhang Jinjiang,et al.Pattern and kinematic polarity of Late Mesozoic extension in continental NE Asia:Perspectives from metamorphic core complexes[J].Tectonics,2011,30,doi:10.1029/2011TC002896.
    [66] Zhang Jinjiang,Santosh M,Wang Xiaoxian,et al.Tectonics of the northern Himalaya since the India-Asia collision[J].Gondwana Research,2012,21:936-960.
    [67] 王新社,郑亚东,张进江,等.呼和浩特变质核杂岩伸展运动学特征及剪切作用类型[J].地质通报,2002,21(4):208-245.
    [68] 郑亚东,曾令森,李键波,等.辽南中生代造山期缩短滑脱与晚造山伸展拆离断层[J].地质科学,2009,44(3):811-824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700