用户名: 密码: 验证码:
内生安全光通信技术及应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Technologies and Applications of Endogenously Secure Optical Communication
  • 作者:张杰
  • 英文作者:ZHANG Jie;State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications;
  • 关键词:光通信 ; 内生安全 ; 安全传输 ; 安全协商 ; 微元安全模型 ; 物理层
  • 英文关键词:optical communication;;endogenous security;;secure transmission;;secure negotiation;;micro-element security model;;physical layer
  • 中文刊名:WXDT
  • 英文刊名:Radio Communications Technology
  • 机构:信息光子学与光通信国家重点实验室北京邮电大学;
  • 出版日期:2019-06-05 16:33
  • 出版单位:无线电通信技术
  • 年:2019
  • 期:v.45;No.270
  • 基金:国家自然科学基金重点项目(61831003)
  • 语种:中文;
  • 页:WXDT201904002
  • 页数:6
  • CN:04
  • ISSN:13-1099/TN
  • 分类号:13-18
摘要
随着信息化建设不断推进,信息技术广泛应用,信息网络快速普及,网络安全引发的非传统安全威胁持续蔓延,并逐步向政治、经济、社会及国防等领域传导渗透。现有光通信系统难以抵御来自线路或节点的信号窃光攻击,面临信息"被搭线"劫持和"被串接"劫持的安全挑战。随着光通信速率和距离大幅提升,光通信网络开放能力显著增强,迫切需要发展安全光通信解决方案,探索实现"强通、强密"光纤传输的有效途径。针对网络强国建设对发展新型通信与安全融合技术提出的战略要求,解决关键信息基础设施互联传输面临的安全防护难题,对基于物理层的安全光通信技术进行了简要介绍,概述了光通信抗截获传输和自同步协商的主要实现方法,在此基础上提出了通密一体的内生安全光通信创新理念,建立了一类"三区耦合、两路简并"的微元安全模型,初步揭示了光通信的内生安全特征与规律,充分利用噪声的作用提高光通信系统安全性能,最后对内生安全光通信的应用前景进行了分析展望。
        With the continuous advance of information construction,wide application of information technology,rapid popularization of information networks,continuous spread of non-traditional security threats caused by network security,and gradual penetration into the political,economic,social,and national defense fields,the existing optical communication systems are difficult to resist signal sneak attacks from fiber lines or nodes,and are faced with various security challenges such as information hijacking.Today the optical communication transmission rate and distance are greatly improved,and the optical communication network's open capability is significantly enhanced.Thus,it is urgent to develop a secure optical communication solution,and explore an effective way to enhance the capability of communication and encryption.Aiming at the strategic requirements of building a nation with strong cyberpower for communication and security convergence technologies,and in order to effectively solve the transmission security protection problem of critical information infrastructure interconnection,the secure optical communication technology based on physical layer is briefly introduced,and the main implementation schemes of the anti-interception transmission and self-synchronization negotiation are summarized.Based on these descriptions,an innovative idea of endogenously secure optical communication featured by the integration of communication and encryption is proposed.The micro-element security model of "three-zone coupling and two-way convergence" is established,which primarily reveals the endogenous security features of the optical communication and makes full use of the role of inherent noise to improve the security performance of optical communication systems.Finally the application prospects of endogenously secure optical communication are analyzed.
引文
[1] Kanter G S,Reilly D,Smith N.Practical Physical-layer Encryption:The Marriage of Optical Noise with Traditional Cryptography [J].IEEE Communications Magazine,2009,47 (11):74-81.
    [2] Grigoryan V S,Kanter G S,Kumar P.Quantum-Noise-Randomized Data Encryption:Comparative Analysis of M-ary PSK and M-ary ASK Protocols for Long-haul Optical Communications [C]//Optical Fiber Communication and the National Fiber Optic Engineers Conference,2007:1-3.
    [3] Nakazawa M,Yoshida M,Hirooka T,et al.Real-time 70 Gbit/s,128 QAM Quantum Noise Stream Cipher Transmission over 100 km with Secret Keys Delivered by Continuous Variable Quantum Key [C]// 42nd European Conference on Optical Communication(ECOC),Dusseldorf,Germany ,2016.
    [4] Rontani D.Enhanced Complexity of Optical Chaos in a Laser Diode with Phase-conjugate Feedback[J].Optics Letters,2016,41(20):4637-4640.
    [5] Nourine M,Chembo Y K,Larger L.Wideband Chaos Generation Using a Delayed Oscillator and a Two-dimensional Nonlinearity Induced by a Quadrature Phase-shift-keying Electro-optic Modulator [J].Optics Letters,2011,36(15):2833-2835.
    [6] Rontani D,Sciamanna M,Locquet A,et al.Multiplexed Encryption Using Chaotic Systems with Multiple Stochastic-delayed Feedbacks [J].Physical Review E,2009,80(6):066209.
    [7] Chang W H,Yang G C,Chang C Y,et al.Enhancing Optical-CDMA Confidentiality with Multicode-keying Encryption [J].Journal of Lightwave Technology,2015,33(9):1708-1718.
    [8] 王旭,王旭华,孙燕斌,等.OCDMA 系统和相关器件研究进展[J].半导体光电,2007,28(4):451-457.
    [9] Wang Z,Fok M P,Prucnal P R.Physical Encoding in Optical Layer Security [J].J Cyber Secur Mobility,2012,1(1):83-100.
    [10] Sutivong A,Naguib A F,Gore D,et al.Separating Pilot Signatures in a Frequency Hopping OFDM System by Selecting Pilot Symbols at Least Hop Away from an Edge of a Hop Region:U.S.Patent 7,768,979[P].2010-8-3.
    [11] Marand C,Townsend P D.Quantum Key Distribution Over Distances as Long as 30 km [J].Optics Letters,1995,20(16):1695-1697.
    [12] Jouguet P,Kunz-Jacques S,Leverrier A,et al.Experimental Demonstration of Long-distance Continuous-variable Quantum Key Distribution [J].Nature Photonics,2013,7(5):378-381.
    [13] Zaman I U,Lopez A B,Al Faruque M A,et al.Polarization Mode Dispersion-based Physical Layer Key Generation for Optical Fiber Link Security [C]//Optical Sensors.Optical Society of America,2017:JTu4A.20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700