用户名: 密码: 验证码:
青海卡尔却卡多金属矿床热液与化学反应耦合成矿过程的数值模拟(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of hydrothermal mineralization associated with simplified chemical reactions in Kaerqueka polymetallic deposit, Qinghai, China
  • 作者:邹艳红 ; 刘尧 ; 潘勇 ; 阳宽达 ; 戴塔根 ; 毛先成 ; 赖建清 ; 田海龙
  • 英文作者:Yan-hong ZOU;Yao LIU;Yong PAN;Kuan-da YANG;Ta-gen DAI;Xian-cheng MAO;Jian-qing LAI;Hai-long TIAN;Computational Geosciences Research Center, Central South University;Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring,Ministry of Education, School of Geosciences and Info-Physics, Central South University;Embedded and Networking Computing Laboratory, Hunan University;College of Resources Environment and Tourism, College of Hunan Arts and Science;Key Laboratory of Groundwater Resources and Environment, Ministry of Education,Jilin University;
  • 关键词:数值模拟 ; 热传递 ; 化学反应 ; 热液成矿 ; 卡尔却卡多金属矿床
  • 英文关键词:numerical simulation;;heat transfer;;chemical reaction;;hydrothermal mineralization;;Kaerqueka polymetallic deposit
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:中南大学计算地球科学研究中心;中南大学地球科学与信息物理学院有色金属成矿预测与地质环境监测教育部重点实验室;湖南大学嵌入式系统及网络实验室;湖南文理学院资源环境与旅游学院;吉林大学地下水资源与环境教育部重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Project(2017YFC0601503)supported by the National Key R&D Program of China;; Projects(41872249,41472302,41772348)supported by the National Natural Science Foundation of China
  • 语种:英文;
  • 页:ZYSY201901017
  • 页数:13
  • CN:01
  • ISSN:43-1239/TG
  • 分类号:171-183
摘要
青海卡尔却卡多金属矿床位于祁漫塔格成矿带,是一个典型的矽卡岩多金属矿床,该矿床形成的条件及详细动力学过程一直是地球科学研究工作中的重要课题。利用有限差分法对该地区的黄铜矿成矿过程进行数值建模,并在数值模拟中近似地考虑野外地质特征、成矿及其相关的地球化学条件。着重采用现代成矿理论定量地考虑卡尔却卡多金属矿床中黄铜矿的成矿化学反应过程。相关数值结果表明:含矿热液流动是该地区矿化的关键控制因素,而温度梯度是孔隙热液流体流动的主要驱动力。在卡尔却卡多金属矿床中,黄铜矿成矿的温度为250~350℃。这些相关的计算结果已通过地质勘查成果得到验证。由此表明:采用新兴计算地球科学中的成矿化学反应与有限差分模型耦合模拟方法有利于提高对该地区成矿过程的认识。
        The Kaerqueka polymetallic deposit, Qinghai, China, is one of the typical skarn-type polymetallic ore deposits in the Qimantage metallogenic belt. The dynamic mechanism on the formation of the Kaerqueka polymetallic deposit is always an interesting topic of research. We used the finite difference method to model the mineralizing process of the chalcopyrite in this region with considering the field geological features, mineralogy and geochemistry. In particular, the modern mineralization theory was used to quantitatively estimate the related chemical reactions associated with the chalcopyrite formation in the Kaerqueka polymetallic deposit. The numerical results indicate that the hydrothermal fluid flow is a key controlling factor of mineralization in this area and the temperature gradient is the driving force of pore-fluid flow. The metallogenic temperature of chalcopyrite in the Kaerqueka polymetallic deposit is between 250 and 350 ℃. The corresponding computational results have been verified by the field observations. It has been further demonstrated that the simulation results of coupled models in the field of emerging computational geosciences can enhance our understanding of the ore-forming processes in this area.
引文
[1]LI Dong-sheng,GU Feng-bao,ZHANG Hai-lan,SU Sheng-shun,ZHONG Liang-yan,LIU Guang-liang.Geologic characteristics of the Kaerqueka porphyry copper deposit in Qinghai Province and its prospecting significance[J].Northwestern Geology,2012,45:174-183.(in Chinese)
    [2]YU M,FENG C Y,ZHAO Y M,LI D X,XIAO Y,LIU J N,LI Z F.Fluid inclusion geochemistry in the Kaerqueka copper polymetallic deposit,Qinghai province and its genetic significances[J].Acta Geologica Sinica,2014,88:903-917.(in Chinese)
    [3]GAO Y B,LI K,QIAN B,LI W Y,LI D S,SU S,ZHANG C G.The genesis of granodiorites and dark enclaves from the Kaerqueka deposit in east Kunlun belt:Evidence from zircon U-Pb dating,geochemistry and Sr-Nd-Hf isotopic compositions[J].Geology in China,2015,42:646-662.(in Chinese)
    [4]ZOU Y H,LIU Y,DAI T G,MAO X C,LEI Y B,LAI J Q,TIAN HL.Finite difference modeling of metallogenic processes in the Hutouya Pb-Zn deposit,Qinghai,China:Implications for hydrothermal mineralization[J].Ore Geology Reviews,2017,91:463-476.
    [5]SCHAUBS P,HOBBS B,ZHAO C.Computational simulation of seepage instability problems in fluid-saturated porous rocks:Potential dynamic mechanisms for controlling mineralization patterns[J].Ore Geology Reviews,2016,79:180-188.
    [6]SCHAUBS P,HOBBS B,ZHAO C.Acquisition of spatially-distributed geochemical data in geoinformatics:Computational simulation approach[J].Journal of Geochemical Exploration,2016,164:18-27.
    [7]LIU L,WAN C,ZHAO Y.Geodynamic constraints on orebody localization in the Anqing orefield,China:Computational modeling and facilitating predictive exploration of deep deposits[J].Ore Geology Reviews,2011,43:249-263.
    [8]LUO Hai-jun,JIE Wan-qi,GAO Zhi-ming,ZHENG Yong-jian.Numerical simulation for macrosegregation in direct-chill casting of2024 aluminum alloy with an extended continuum mixture model[J].Transactions of Nonferrous Metals Society of China,2018,28:1007-1015.
    [9]SCHAUBS P,HOBBS B,ZHAO C.Effects of porosity heterogeneity on chemical dissolution-front instability in fluid-saturated rocks[J].Journal of Central South University,2017,24:720-725.
    [10]ORD A,HOBBS E B,ZHAO C.Chemical dissolution-front instability associated with water-rock reactions in groundwater hydrology:Analyses of porosity-permeability relationship effects[J].Journal of Hydrology,2016,540:1078-1087.
    [11]ZHAO C,HOBBS E B,ORD A.Modeling of mountain topography effects on hydrothermal Pb-Zn mineralization patterns:Generic model approach[J].Journal of Geochemical Exploration,2018,190:400-410.
    [12]ZHAO C,HOBBS B E,ORD A.Convective and advective heat transfer in geological systems[M].Berlin:Springer,2008.
    [13]ORD A,HOBBS E B,ZHAO C.Effects of acid dissolution capacity on the propagation of an acid-dissolution front in carbonate rocks[J].Computers and Geosciences,2017,102:109-115.
    [14]HOBBS E B,ORD A,ZHAO C.Why asymptotic limit of the acid dissolution capacity can lead to a sharp dissolution front in chemical dissolution of porous rocks[J].International Journal for Numerical and Analytical Methods in Geomechanics,2017,41:1590-1602.
    [15]ZHAO C,HOBBS B E,MUHLHAUS H B.Finite element modelling of temperature gradient driven rock alteration and mineralization in porous rock masses[J].Computer Methods in Applied Mechanics and Engineering,1998,165:175-187.
    [16]HOBBS B E,ORD A.Investigating dynamic mechanisms of geological phenomena using methodology of computational geosciences:An example of equal-distant mineralization in a fault[J].Science in China Series D:Earth Sciences,2008,51:947-954.
    [17]ZHAO C,HOBBS B E,ORD A.Fundamentals of computational geoscience:Numerical methods and algorithms[M].Berlin:Springer,2009.
    [18]LIN G,HOBBS B E,ORD A,MUHLHAUS H B.Theoretical and numerical analyses of convective instability in porous media with temperature-dependent viscosity[J].Communications in Numerical Methods in Engineering,2003,19:787-799.
    [19]ZHAO C,HOBBS E B,ORD A.Analytical solution for dissolution-time-scale reactive transport in fluid-saturated porous rocks[J].International Journal of Geomechanics,2018,18:1-12.
    [20]ZHAO C,HOBBS E B,ORD A.Validity of using large-density asymptotics for studying reaction-infiltration instability in fluid-saturated rocks[J].Journal of Hydrology,2018,559:454-460.
    [21]ZHAO C,HOBBS B,ORD A.A unified theory for sharp dissolution front propagation in chemical dissolution of fluid-saturated porous rocks[J].Science China:Technological Sciences,2018,61:1-12.
    [22]LIN G,PENG M,ZHANG L,ZHANG D.Numerical analysis and simulation experiment of lithospheric thermal structures in the South China Sea and the Western Pacific[J].Journal of Earth Science,2009,20:85-94.
    [23]ORD A,HOBBS B E,ZHANG Y,BROADBENT G C,BROWN M,WILLETTS G,SORJONEN-WARD P.Geodynamics modeling of the Century deposit,Mt Isa Province,Queensland,Australia[J].Australian Journal of Earth Sciences,2002,49:1011-1039.
    [24]LIU L M,YANG G Y,PENG S L.Numerical modeling of coupled geodynamical processes and its role in facilitating predictive ore discovery:An example from Tongling,China[J].Resource Geology,2005,55:21-31.
    [25]KUHN M,MUHLHAUS H B,PENG S.Numerical simulation of double-diffusion driven convective flow and rock alteration in three-dimensional fluid-saturated geological fault zones[J].Computer Methods in Applied Mechanics and Engineering,2006,195:2816-2840.
    [26]HORNBY P,PENG S,LIU L M.Mineral precipitation associated with vertical fault zones:The interaction of solute advection,diffusion and chemical kinetics[J].Geofluids,2007,7:3-18.
    [27]HOBBS B E,ZHANG Y,ORD A.Application of coupled deformation,fluid flow,thermal and chemical modelling to predictive mineral exploration[J].Journal of Geochemical Exploration,2000,70:505-509.
    [28]HOBBS B E,ORD A,PENG S,MUHLHAUS H B,LIU L M.Theoretical investigation of convective instability in inclined and fluid-saturated three-dimensional fault zones[J].Tectonophysics,2004,387:47-64.
    [29]GOW P A,UPTON P,HILL K C.Copper-gold mineralisation in New Guinea:Numerical modelling of collision,fluid flow and intrusion-related hydrothermal systems[J].Australian Journal of Earth Sciences,2002,49:753-771.
    [30]ORD A,PENG S,LIU L.Inversely-mapped analytical solutions for flow patterns around and within inclined elliptic inclusions in fluid-saturated rocks[J].Mathematical Geosciences,2008,40:179-197.
    [31]ORD A,HORNBY P,PENG S.Morphological evolution of three-dimensional chemical dissolution front in fluid-saturated porous media:A numerical simulation approach[J].Geofluids,2008,8:113-127.
    [32]ZHAO C B.Advances in numerical algorithms and methods in computational geosciences with modeling characteristics of multiple physical and chemical processes[J].Science China:Technological Sciences,2015,58:783-795.
    [33]ORD A,HOBBS B E,ZHAO B C.Theoretical and numerical investigation into roles of geofluid flow in ore forming systems:Integrated mass conservation and generic model approach[J].Journal of Geochemical Exploration,2010,106:251-260.
    [34]ORD A,HOBBS B E,ZHAO B C.Effects of medium and pore-fluid compressibility on chemical-dissolution front instability in fluid-saturated porous media[J].International Journal for Numerical and Analytical Methods in Geomechanics,2012,36:1077-1100.
    [35]ZHAO C,HOBBS B E,ORD A.Theoretical analyses of acidization dissolution front instability in fluid-saturated carbonate rocks[J].International Journal for Numerical and Analytical Methods in Geomechanics,2013,37:2084-2105.
    [36]HORNBY P,ORD A,PENG S,LIU L.Theoretical and numerical analyses of chemical-dissolution front instability in fluid-saturated porous rocks[J].International Journal for Numerical and Analytical Methods in Geomechanics 2008,32:1107-1130.
    [37]HOBBS B E,ORD A,HORNBY P,PENG S.Effect of reactive surface areas associated with different particle shapes on chemical-dissolution front instability in fluid-saturated porous rocks[J].Transport in Porous Media,2008,73:75-94.
    [38]HOBBS B E,ORD A,PENG S.Effects of mineral dissolution ratios on chemical-dissolution front instability in fluid-saturated porous media[J].Transport in Porous Media,2010,82:317-335.
    [39]HOBBS B E,ORD A.Theoretical analyses of the effects of solute dispersion on chemical-dissolution front instability in fluid-saturated porous media[J].Transport in Porous Media,2010,84:629-653.
    [40]SCHAUBS P M,ZHAO C.Numerical models of gold-deposit formation in the Bendigo-Ballarat Zone,Victoria[J].Australian Journal of Earth Sciences,2002,49:1077-1096.
    [41]SORJONEN-WARD P,ZHANG Y.Numerical modelling of orogenic processes and gold mineralisation in the southeastern part of the Yilgarn Craton,Western Australia[J].Australian Journal of Earth Sciences,2002,49:935-964.
    [42]ZHANG Y,HOBBS B E,ORD A,BARNICOAT A.The influence of faulting on host-rock permeability,fluid flow and ore genesis of gold deposits:A theoretical 2D numerical model[J].Journal of Geochemical Exploration,2003,79:279-284.
    [43]JU M,DAI T,YANG J.Finite element modeling of pore-fluid flow in the Dachang ore district,Guangxi,China:Implications for hydrothermal mineralization[J].Geoscience Frontiers,2011,2:463-474.
    [44]HORNBY P,ORD A,PENG S.Numerical modelling of fluids mixing,heat transfer and non-equilibrium redox chemical reactions in fluid-saturated porous rocks[J].International Journal for Numerical Methods in Engineering,2006,66:1061-1078.
    [45]HORNBY P,PENG S,LIU L.Theoretical and numerical analyses of pore-fluid flow patterns around and within inclined large cracks and faults[J].Geophysical Journal International,2006,166:970-988.
    [46]ZHAO C,HOBBS B E,ORD A.Theoretical analyses of nonaqueous phase liquid dissolution-induced instability in two-dimensional fluid-saturated porous media[J].International Journal for Numerical and Analytical Methods in Geomechanics,2010,34:1767-1796.
    [47]ZHAO C,HOBBS B,ALT-EPPING P.Modeling of ore-forming and geoenvironmental systems:Roles of fluid flow and chemical reaction processes[J].Journal of Geochemical Exploration,2014,144:3-11.
    [48]ZHAO C,HOBBS B E,ORD A.A new alternative approach for investigating acidization dissolution front propagation in fluid-saturated rocks[J].Science China:Technological Sciences,2017,60:1197-1210.
    [49]ZHAO C,WANG Y,MUHLHAUS H B,LIN G,ORD A,LIN G.Finite element modelling of reactive fluids mixing and mineralization in pore-fluid saturated hydrothermal/sedimentary basins[J].Engineering Computations,2002,19:364-387.
    [50]POULET T,REGENAUER-LIEB K.Numerical modeling of toxic nonaqueous phase liquid removal from contaminated groundwater systems:Mesh effect and discretization error estimation[J].International Journal for Numerical and Analytical Methods in Geomechanics,2015,39:571-593.
    [51]REID L B,REGENAUER-LIEB K,POULET T.A porosity-gradient replacement approach for computational simulation of chemical-dissolution front propagation in fluid-saturated porous media including pore-fluid compressibility[J].Computational Geosciences,2012,16:735-755.
    [52]REID L B,REGENAUER-LIEB K.Some fundamental issues in computational hydrodynamics of mineralization:A review[J].Journal of Geochemical Exploration,2012,112:21-34.
    [53]LIU Y,DAI T,XIA S,TIAN H.Computational simulation of iron ore-forming processes in the Caiyuanzi siderite ore district,Guizhou,China[J].Journal of Geochemical Exploration,2015,158:155-167.
    [54]HOBBS B E,REGENAUER-LIEB K,ORD A.Computational simulation for the morphological evolution of nonaqueous phase liquid dissolution fronts in two-dimensional fluid-saturated porous media[J].Computational Geosciences,2011,15:167-183.
    [55]PENG S,HOBBS B E,ORD A.Particle simulation of spontaneous crack generation associated with the laccolithic type of magma intrusion processes[J].International Journal for Numerical Methods in Engineering,2008,75:1172-1193.
    [56]PENG S,LIU L,HOBBS B E,ORD A.Computational simulation of convective flow in the Earth crust under consideration of dynamic crust-mantle interactions[J].Journal of Central South University of Technology,2011,18:2080-2084.
    [57]ZHAO C,HOBBS B E,ORD A.Theoretical analyses of chemical dissolution-front instability in fluid-saturated porous media under non-isothermal conditions[J].International Journal for Numerical and Analytical Methods in Geomechanics,2015,39:799-820.
    [58]ZHAO C,HOBBS B E,ORD A.Computational simulation of chemical dissolution-front instability in fluid-saturated porous media under non-isothermal conditions[J].International Journal for Numerical Methods in Engineering,2015,102:135-156.
    [59]ZHAO C.Physical and chemical dissolution front instability in porous media:Theoretical analyses and computational simulations[M].Berlin:Springer,2014.
    [60]POULET T,REGENAUER-LIEB K.Replacement of annular domain with trapezoidal domain in computational modeling of nonaqueous-phase-liquid dissolution-front propagation problems[J].Journal of Central South University,2015,22:1841-1846.
    [61]WANG S,FENG C Y,BO H X,JIANG J H.Characteristics and genesis of mineral compostion of Kaerqueka skarn type copper polymetallic deposit in Qimantage Area,Qinghai Province[J].Acta Mineralogica Sinica,2009,29:483-484.
    [62]LI D S,ZHANG W Q,TIAN C S,YAN C,WANG L J,JING X.Discussion on the metallogenic characteristics and ore-prospecting methods of Qimantage region,Qinghai Province[J].Northwestern Geology,2013,46:131-141.(in Chinese)
    [63]XUE P.Geological characteristics and ore-finding prospect analysis of Yelasai Copper Mine in Kaerqueka[J].West-China Exploration Engineering,2007,19:68-71.(in Chinese)
    [64]LI D X,FENG C Y,ZHAO Y M,LI Z F,LIU,J N,XIAO Y.Mineralization and alteration types and skarn mineralogy of Kaerqueka copper polymetallic deposit in Qinghai Province[J].Journal of Jilin University,2011,41:1818-1830.(in Chinese)
    [65]LIANG H,ZHANG S,ZHANG H,CHEN Z,ZHANG Z,CHANG,Y.Geological characteristics and metallogenic model of Kaerqueka copper polymetallic deposit in Geermu of Qinghai[J].Mineral Resources and Geology,2015,29:7-13.(in Chinese)
    [66]SONG Z B,JIA Q Z,ZHANG Z Y,HE S Y,CHEN X Y,QUAN S C,LI Y Z,ZHANG Y L,ZHANG X F.Study on geological feature and origin of Yemaquan Fe-Cu deposit in Qimantage Area,Eastern Kunlun[J].Northwestern Geology,2010,43:209-217.(in Chinese)
    [67]CUNDALL P A.A microcomputer program for modeling large-strain plasticity problems[J].Numerical Methods in Geomechanics(Innsbruck 1988),1988,1:2101-2108.
    [68]LIU L,ZHAO Y.Coupled geodynamics in the formation of Cu skarn deposits in the Tongling-Anqing district,China:Computational modeling and implications for exploration[J].Journal of Geochemical Exploration,2010,106:146-155.
    [69]POULET T,REGENAUER-LIEB K,HOBBS B E.Computational modeling of moving interfaces between fluid and porous medium domains[J].Computational Geosciences,2013,17:151-166.
    [70]ALT-EPPING P,ZHAO C.Reactive mass transport modelling of a three-dimensional vertical fault zone with a finger-like convective flow regime[J].Journal of Geochemical Exploration,2010,106:8-23.
    [71]MUMM A S,BRUGGER J,ZHAO C,SCHACHT U.Fluids in geological processes-The present state and future outlook[J].Journal of Geochemical Exploration,2010,106:1-7.
    [72]WALSHE J L,MUHLHAUS H B,ORD A.Finite element modeling of fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins[J].Computer Methods in Applied Mechanics and Engineering,2001,190:2277-2293.
    [73]ORD A,HOBBS B E,ZHAO B C.Analytical solutions of nonaqueous-phase-liquid dissolution problems associated with radial flow in fluid-saturated porous media[J].Journal of Hydrology,2013,494:96-106.
    [74]ORD A,HOBBS B E,ZHAO B C.Effects of medium permeability anisotropy on chemical-dissolution front instability in fluid-saturated porous media[J].Transport in Porous Media,2013,99:119-143.
    [75]ZHAO C.Dynamic and transient infinite elements:Theory and geophysical,geotechnical and geoenvironmental applications[M].Berlin:Springer,2009.
    [76]ORD A,HOBBS B E,ZHAO B C.Effects of domain shapes on the morphological evolution of nonaqueous-phase-liquid dissolution fronts in fluid-saturated porous media[J].Journal of Contaminant Hydrology,2012,138:123-140.
    [77]CHENG Yong-sheng.Geochemistry of intrusive rock in Dachang tin-polymetallic ore field,Guangxi,China:Implications for petrogenesis and geodynamics[J].Transactions of Nonferrous Metals Society of China,2015,25:284-292.
    [78]HUA Xiao-ming,ZHENG Yong-fei,XU Qian,LU Xiong-gang,CHENG Hong-wei,ZOU Xing-li,SONG Qiu-shi,NING Zhi-qiang.Interfacial reactions of chalcopyrite in ammonia-ammonium chloride solution[J].Transactions of Nonferrous Metals Society of China,2018,28:556-566.
    [79]XU T,SONNENTHAL E,SPYCHER N,PRUESS K.TOUGHREACT user’s guide:A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media(V1.2.1)[R].Berkeley,CA(US):Ernest Orlando Lawrence Berkeley National Laboratory,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700