用户名: 密码: 验证码:
全共轭聚合物共混体系相分离结构与光伏性质
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism of All Conjugated Polymer Phase Separation and Research Progress
  • 作者:张睿 ; 刘剑刚 ; 韩艳春
  • 英文作者:ZHANG Rui;LIU Jian-gang;HAN Yan-chun;State Key Laboratary of High Power Semiconductor Lasers, College of Science, Changchun University of Science and Technology;University of the Chinese Academy of Sciences;
  • 关键词:全共轭聚合物太阳能电池 ; 相分离结构 ; 结晶 ; 取向
  • 英文关键词:All conjugated polymer solar cells;;Phase separation;;Crystallization;;Orientation
  • 中文刊名:GFZT
  • 英文刊名:Polymer Bulletin
  • 机构:高分子物理与化学国家重点实验室中国科学院长春应用化学研究所;中国科学院大学;
  • 出版日期:2019-01-18 19:05
  • 出版单位:高分子通报
  • 年:2019
  • 期:No.238
  • 基金:国家自然科学基金(21334006)
  • 语种:中文;
  • 页:GFZT201902013
  • 页数:14
  • CN:02
  • ISSN:11-2051/O6
  • 分类号:115-128
摘要
全共轭聚合物太阳能电池具有给受体能级可调、吸收范围宽及可溶液加工等优势,已经成为太阳能电池领域的发展趋势。经过材料、体异质结结构、界面及器件结构的优化,器件能量转化效率已经突破10%。其中,共混体系相分离微观结构是制约有机太阳能电池光电转换效率进一步提高的关键因素。在具有结晶组分的共混体系中,由于组分本身结晶相态行为的变化,深入认识和理解结晶与相分离之间的关系以及结晶体系相分离机理的特殊性,更利于有效地调节全共轭聚合物相分离结构。本文从传统聚合物相分离理论和聚合物结晶经典理论出发,结合共轭聚合物结构本身独特性,总结全共轭聚合物共混体系相分离结构特点和难点,重点从热力学和动力学两个方面阐述调控相分离结构基本方法和原理,进一步完善探索共轭聚合物相分离机理。
        The all conjugated polymer solar cell has the advantages of adjustable energy level of the receptor, wide absorption range and solution processing, and has become a development trend in the field of solar cells. Through the optimization of materials and device structure, the energy conversion efficiency of the device has exceeded 10%. Among them, the phase separation microstructure of the blend system is a key factor that restricts the further improvement of the photoelectric conversion efficiency of organic solar cells. In the blend system with crystalline components, due to the change of the phase behavior of the components themselves, the understanding and understanding of the relationship between crystallization and phase separation and the particularity of the phase separation mechanism of the crystallization system are more conducive to effective adjustment of the total The yoke polymer phase separation structure. Based on the traditional polymer phase separation theory and the classical theory of polymer crystallization, combined with the uniqueness of the conjugated polymer structure, this paper summarizes the phase separation structure characteristics and difficulties of the fully conjugated polymer blend system, focusing on thermodynamics and kinetics. The aspects describe the basic methods and principles of controlling the phase separation structure, and further improve the mechanism of phase separation of conjugated polymers.
引文
[1] Lu L, Zheng T, Wu Q, et al. Chem Rev, 2015, 115 (23): 12666~12731.
    [2] Minnaert B, Burgelman M. Prog Phot Res Appl, 2007, 15 (8): 741~748.
    [3] Scharber M C, Wuhlbacher D. Koppe M, et al. Adv Mater, 2006, 18(6): 789~794.
    [4] Thompson B C, Frechet J M J. Angew Chem-Int Edit, 2008, 47(1): 58~77.
    [5] Nagarjuna G, Venkataraman D. J Polym Sci Pt B-Polym Phys, 2012, 50(15): 1045~1056.
    [6] Earmme T, Hwang Y J, Murari N M, et al. J Am Chem Soc, 2013, 135(40): 14960~14963.
    [7] Mori D, Benten H, Ohkita H, et al. ACS Appl Mater Interfaces, 2012, 4(7): 3325~3329.
    [8] Fan B, Ying L, Zhu P, et al. Adv Mater, 2017, 1703906.
    [9] Yoon W S, Kim D W, Choi M, et al. Adv Energy Mater, 2017, 1701467.
    [10] Zheng Z, Hu Q, Zhang S, et al. Adv Mater, 2018, e1801801.
    [11] Meng L, Zhang Y, Wan X, et al. Science, 2018, 10.1126/science.aat2612.
    [12] Long X, Ding Z, Dou C, et al. Adv Mater, 2016, 28(30): 6504~6508.
    [13] Li Z, Zhang W, Xu X, et al. Adv Energy Mater, 2017, 7(14): 1602722.
    [14] Zhang K, Xia R, Fan B, et al. Adv Mater, 2018, e1803166.
    [15] Zhao Y, Shao S Y, Xie Z Y, et al. J Phys Chem C, 2009, 113(39): 17235~17239.
    [16] Zhao J, Li Y, Yang G, et al. Nat Energy, 2016, 1(2): 15027.
    [17] Bartynski A N, Grob S, Linderl T, et al. J Phys Chem C, 2016, 120(34): 19027~19034.
    [18] Zhou J, Wan X, Liu Y, et al. J Am Chem Soc, 2012, 134(39): 16345~16351.
    [19] Fang J, Deng D, Wang Z, et al. ACS Appl Mater Interfaces, 2018, 10(15): 12913~12920.
    [20] Zhang Q, Kan B, Liu F, et al. Nat Photonics, 2014, 9(1): 35~41.
    [21] Bin H, Yao J, Yang Y, et al. Adv Mater, 2018, 30(27): e1706361.
    [22] Gao W, An Q, Ming R, et al. Adv Funct Mater, 2017, 27(34): 1702194.
    [23] Lin Y, Zhao F, He Q, et al. J Am Chem Soc, 2016, 138(14): 4955~4961.
    [24] Yang Y, Zhang Z G, Bin H, et al. J Am Chem Soc, 2016, 138(45): 15011~15018.
    [25] Holcombe T W, Woo C H, Kavulak D F J, et al. J Am Chem Soc, 2009, 131: 14160~14161.
    [26] He X, Gao F, Tu G, et al. Nano Lett, 2010, 10(4): 1302~1307.
    [27] Schubert M, Dolfen D, Frisch J, et al. Adv Energy Mater, 2012, 2(3): 369~380.
    [28] Zhou E, Cong J, Hashimoto K, et al. Adv Mater, 2013, 25(48): 6991~6996.
    [29] Mori D, Benten H, Okada I, et al. Energy Environ Sci, 2014, 7(9): 3325~3329.
    [30] Zhou Y, Kurosawa T, Ma W, et al. Adv Mater, 2014, 26(22): 3767~3772.
    [31] Mu C, Liu P, Ma W, et al. Adv Mater, 2014, 26(42): 7224~7230.
    [32] Su W, Meng Y, Guo X, et al. J Mater Chem A, 2018, 6(34): 16403~16411.
    [33] Gao L, Zhang Z G, Xue L, et al. Adv Mater, 2016, 28(9): 1884~1890.
    [34] Li Z, Xu X, Zhang W, et al. J Am Chem Soc, 2016, 138(34): 10935~10944.
    [35] Shoaee S, Stolterfoht M, Neher D. Adv Energy Mater, 2018, 1703355.
    [36] Gautam B, Klump E, Yi X, et al. 2018, 1801392.
    [37] Lin Y L, Fusella M A, Rand B P. Adv Energy Mater, 2018, 1702816.
    [38] Hoppe H, Sariciftci N S. Adv Polym Sci, 2007, 214: 1~86.
    [39] Holliday S, Li Y, Annu Rev Phys Chem, 2003, 54: 141~172.
    [40] Schwartz B J. Annu Rev Phys Chem, 2003, 54: 141~172.
    [41] Hildner R, K?hler A, Müller-Buschbaum P, et al. Adv Energy Mater, 2017, 1700314.
    [42] Zhong Y, Biniek L, Leclerc N, et al. Macromolecules, 2018, 51(11): 4238~4249.
    [43] Van Franeker J J, Turbiez M, Li W, et al. Nat Commun, 2015, 6, 6229.
    [44] Kouijzer S, Michels J J, Van Den M, et al. J Am Chem Soc, 2013, 135(32): 12057~12067.
    [45] Machui F, Maisch P, Burgues-Ceballos I, et al. ChemPhysChem, 2015, 16(6): 1275~1280.
    [46] Yuan J, Xu Y, Shi G, et al. J Mater Chem A, 2018, 6(22): 10421~10432.
    [47] Shin M, Kim H, Park J, et al. Adv Funct Mater, 2010, 20(5): 748~754.
    [48] Tang H W, Lu G H, Li L G, et al. J Mater Chem, 2010, 20(4): 683~688.
    [49] Hoffman J, Miller R L. Polymer, 1997, 38, 13: 3151~3212.
    [50] Zhou K, Liu J, Li M, et al. J Phys Chem C, 2015, 119(4): 1729~1736.
    [51] Zhou K, Liu J, Zhang R, et al. Polymer, 2016, 86: 105~112.
    [52] Sadler D M. Nature, 1987, 326, 12: 174~177.
    [53] Olmsted P D, Poon W C K, McLeish T C B, et al. Phys Rev Lett, 1998, 81: 373~376.
    [54] Strobl G. Eur Phys J E, 2000, 3: 165~183.
    [55] Strobl G. Prog Polym Sci, 2006, 31(4): 398~442.
    [56] Tanaka H, Nishi T. Phys Rev Lett, 1985, 55(10): 1102~1105.
    [57] Kang H, Lee W, Oh J, et al. Accounts Chem Res, 2016, 49(11): 2424~2434.
    [58] Zhang R, Yang H, Zhou K, et al. Macromolecules, 2016, 49(18): 6987~6996.
    [59] Zhou K, Zhang R, Liu J, et al. ACS Appl Mater Interfaces, 2015, 7(45): 25352~25361.
    [60] Zhou N, Dudnik A S, Li T I, et al. J Am Chem Soc, 2016, 138(4): 1240~1251.
    [61] Jung J, Lee W, Lee C, et al. Adv Energy Mater, 2016, 1600504.
    [62] Zhang R, Yan Y, Yang H, et al. Polymer, 2018, 138: 49~56.
    [63] Shi S, Yuan J, Ding G, et al. Adv Funct Mater, 2016, 26(31): 5669~5678.
    [64] Yuan J, Xu Y, Shi G. J Mater Chem A, 2018, 6, 10421.
    [65] Ye L, Collins B A., Jiao X, et al. Adv Energy Mater, 2018, 1703058.
    [66] Ye L, Hu H, Ghasemi M, et al. Nat Mater, 2018, 17(3): 253~260.
    [67] Moule A J, Meerholz K. Adv Mater, 2008, 20(2): 240.
    [68] Zhang Y, Yuan J, Sun J, et al. ACS Appl Mater Interfaces, 2017, 9(15): 13396~13405.
    [69] Wang H, Chen L, Xing R, et al. Langmuir, 2015, 31(1): 469~479.
    [70] Wang H, Xu Y, Yu X, et al. Polymers, 2013, 5(4): 1272~1324.
    [71] Lourenco O, Benatto L, Marchiori C F N, et al. J Phys Chem C, 2017, 121(29): 16035~16044.
    [72] Zhou K, Liu J, Li M, et al. J Polym Sci Pt B-Polym Phys, 2015, 53(4): 288~296.
    [73] Hu H, Jiang K, Kim J, et al. J Mater Chem A, 2016, 4(14): 5039~5043.
    [74] Hu H, Chow P C Y, Zhang G, et al. Acc Chem Res, 2017, 50(10): 2519~2528.
    [75] Li Z, Lin H, Jiang K, et al. Nano Energy, 2015, 15: 607~615.
    [76] Liu Y, Zhao J, Li Z, et al. Nat Commun, 2014, 5, 5293.
    [77] Kim Y J, Ahn S, Wang D H, et al. Sci Rep, 2015, 5, 18024.
    [78] Zhou Y, Gu K L, Gu X, et al. Chem Mat, 2016, 28(14): 5037~5042.
    [79] Van F J J, Westhoff D, Turbiez M, et al. Adv Funct Mater, 2015, 25(6): 855~863.
    [80] Hellmann C, Treat N. J Polym Sci Pt B-Polym Phys 2015, 53(4): 304~310.
    [81] Liao H C, Tsao C S, Lin T H, et al. J Am Chem Soc, 2011, 133(33): 13064~13073.
    [82] Oh J Y, Shin M, Lee T, et al. Macromolecules, 2012, 45(18): 7504~7513.
    [83] Zuo L, Hu X, Ye, et al. J Phys Chem C, 2012, 116(32): 16893~16900.
    [84] Van F J J, Hermida-Merino D, Gommes C, et al. Adv Funct Mater, 2017, 27(46): 1702516.
    [85] Bartelt J A, Douglas J D, Mateker W R, et al. Adv Energy Mater, 2014, 4(9): 1301733.
    [86] Shin N, Richter L J, Herzing A A, et al. Adv Energy Mater, 2013, 3(7): 938~948.
    [87] Richter L J, Delongchamp D M, Amassian A. Chem Rev, 2017, 117(9): 6332~6366.
    [88] Na J Y, Kang B, Sin D H, et al. Sci Rep, 2015, 5, 13288.
    [89] Roders M, Duong V V, Ayzner A L. J Mater Res, 2017, 32(10): 1935~1945.
    [90] Reichenberger M, Kroh D, Matrone G M M, et al. J Polym Sci Pt B-Polym Phys, 2018, 56(6): 532~542.
    [91] Clarke T M, Peet J, Lungenschmied C, et al. J Mater Chem A, 2014, 2(31): 12583~12593.
    [92] Yonkoski R K, Soane D S. J Appl Phys, 1992, 72(2): 725~740.
    [93] Richter L J, Delongchamp D M, Bokel F A, et al. Adv Energy Mater, 2015, 5(3): 1400975.
    [94] Gu X, Yan H, Kurosawa T, et al. Adv Energy Mater, 2016, 6(22): 1601225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700