用户名: 密码: 验证码:
高频变压器磁场和温度场的瞬态特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transient Simulation Analysis of Electromagnetic Field and Temperature Field of High-frequency Transformer
  • 作者:刘洁苇 ; 吕运强 ; 李琳 ; 陈彬
  • 英文作者:LIU Jiewei;Lü Yunqiang;LI Lin;CHEN Bin;State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University;State Grid Corporation of China;
  • 关键词:大功率高频变压器 ; 铁芯损耗 ; 绕组损耗 ; 多物理场 ; 磁场 ; 温升特性
  • 英文关键词:high-power high-frequency transformer;;core loss;;winding losses;;multiple physical fields;;magnetic field;;temperature rise
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:新能源电力系统国家重点实验室(华北电力大学);国家电网有限公司;
  • 出版日期:2018-12-07 16:09
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.317
  • 基金:国家重点研发计划(2017YFB0903904);; 国家自然科学基金(51677064)~~
  • 语种:中文;
  • 页:GDYJ201904024
  • 页数:10
  • CN:04
  • ISSN:42-1239/TM
  • 分类号:189-198
摘要
精确预估非正弦波激励下高频变压器绕组与铁芯损耗、研究正常模态下变压器温升特性,对于大功率高频变压器的结构优化和散热设计至关重要。首先,结合正常模态下高频变压器的非正弦激励波形,利用Infolytica MagNet电磁场分析软件对高频变压器开展瞬态磁场仿真计算。然后,利用铁芯的磁化和高频损耗特性测量结果,计算出高频变压器铁芯和绕组高频损耗。最后,将损耗作为载荷加载至ThermNet计算变压器的三维温度分布。设计和制作了两台5k Hz、10kW纳米晶合金铁芯壳式和芯式高频变压器试验模型,利用上述方法针对两台变压器的磁场、损耗、温度场进行仿真计算。结果表明:损耗仿真结果与空载、短路实验的测量结果之间的偏差低于15%;壳式和芯式高频变压器在自然散热方式下的稳态最大温度分别为104℃和108℃,壳式拓扑结构的散热特性优于芯式结构;最后提出了大功率高频变压器的散热设计方法,该方法对于大功率高频变压器的优化设计具有一定的指导意义。
        Accurate estimation of the copper losses and magnetic core losses of high-frequency transformers under non-sinusoidal voltage magnetization and analysis of the temperature-rise property of transformers under normal conditions are essential for the optimization design and heat dissipation design of the high-power high-frequency transformer(HFT). Firstly, taking the non-sinusoidal excitation waveform of HFT in normal mode into account, we simulated the transient3 D magnetic field distribution of HFT based on the InfolyticaMagNet software. Then, utilizing the measured magnetization curve and core loss characteristics, we calculated the losses of windings and core of the HFT. Finally, the obtained loss was applied in ThermNet to calculate the transient 3 D temperature distribution. Moreover, two prototypes of5 kHz/10 kW nanocrystalline-based HFTs with shell and core type topologies were designed and manufactured. Using the above method, the magnetic field, loss, and temperature were calculated. The results show that the deviation between the simulated and measured losses is within 15%. The maximum temperature of core and shell type prototypes under the natural cooling are 104℃ and 108℃, respectively. The heat dissipation characteristic of shell type topology is superior to that of the core type. And a method of heat dissipation is put forward for the optimization design of high-power high-frequency transformer.
引文
[1]KENZELMANN S,RUFER A,DUJIC D,et al.Isolated DC/DCstructure based on modular multilevel converter[J].IEEE Transactions on Power Electronics,2015,30(1):89-98.
    [2]温家良,吴锐,彭畅,等.直流电网在中国的应用前景分析[J].中国电机工程学报,2012,32(13):7-12.WEN Jialiang,WU Rui,PENG Chang,et al.Analysis of DC grid prospects in China[J].Proceedings of the CSEE,2012,32(13):7-12.
    [3]尹毅然.高频变压器损耗计算和散热的设计与优化[D].北京:华北电力大学,2017.YIN Yiran.Loss calculation,heat sink design and optimization of high frequency transformers[D].Beijing,China:North China Electric Power University,2017.
    [4]姜宏伟,徐其迎,游华春,等.干式变压器温升理论与计算方法研究[J].变压器,2016,53(1):14-18.JIANG Hongwei,XU Qiying,YOU Huachun,et al.Study on temperature rise theory and calculation method of dry-type Transformer[J].Transformer,2016,53(1):14-18.
    [5]苏小平.浸式变压器绕组热点温度计算模型及预测方法研究[D].重庆:重庆大学,2012.SU Xiaoping.Investigation into the calculation model and prediction method of hot-spot temperature for oil-immersed transformers[D].Chongqing,China:Chongqing University,2012.
    [6]律方成,郭云翔.非正弦激励下中频变压器铁损计算方法对比分析[J].高电压技术,2017,43(3):808-813.LüFangcheng,GUO Yunxiang.Comparative analysis of core loss calculation methods for medium frequency transformer under non-sinusoidal excitation[J].High Voltage Engineering,2017,43(3):808-813.
    [7]晏冰.大型电力变压器三维漏磁场与热场耦合分析[D].沈阳:沈阳工业大学,2012.YAN Bing.Analysis of 3D leakage magnetic field coupled with thermal field in large scale power transformer[D].Shenyang,China:Shenyang University of Technology,2012.
    [8]冉庆凯.大型电力变压器磁热耦合计算的研究[D].北京:华北电力大学,2015.RAN Qingkai.Large power transformer magnetic thermal coupling study on calculation[D].Beijing,China:North China Electric Power University,2015.
    [9]王新勇.高频变压器损耗及温升特性分析[D].天津:河北工业大学,2014.WANG Xinyong.Analysis of power loss and temperature rise characteristic of high frequency transformer[D].Tianjin,China:Hebei University of Technology,2014.
    [10]兰贞波,文武,阮江军,等.基于有限元法的干式变压器多物理场分析计算[J].高压电器,2015,51(8):107-113.LAN Zhenbo,WEN Wu,RUAN Jiangjun,et al.Analysis of multi-physical field in ventilated dry-type Transformer with FEMmethod[J].High Voltage Apparatus,2015,51(8):107-113.
    [11]刘乃胜.中频非晶合金变压器的电磁及温度特性计算与分析[D].沈阳:沈阳工业大学,2016.LIU Naisheng.Calculation and analysis on electromagnetic and temperature properties of amorphous alloy MF transformer[D].Shenyang,China:Shenyang University of Technology,2016.
    [12]张牧,高立业,魏娟,等.树脂浇注干式变压器三维温度场仿真计算[J].天津工业大学学报,2015,34(3):62-66.ZHANG Mu,GAO Liye,WEI Juan,et al.Simulation of three-dimensional temperature field of cast-resindry-type transformers[J].Journal of Tian Jin Polytechnic University,2015,34(3):62-66.
    [13]刘旸,陈庆国,魏新劳,等.换流变压器谐波损耗与瞬态漏磁场分析[J].黑龙江电力,2010,32(2):99-101.LIU Yang,CHEN Qingguo,WEI Xinlao,et al.Analysis of harmoniclosses and transient leakage field on converter transformers[J].Heilongjian Power,2010,32(2):99-101.
    [14]张良县,陈模生,彭宗仁,等.非正弦负载电流下特高压换流变压器绕组的谐波损耗分析[J].中国电机工程学报,2014,34(15):2452-2459.ZHANG Liangxian,CHEN Mosheng,PENG Zongren,et al.Study on the harmonic losses of UHV converter transformer windings subject to non-sinusoidal load current[J].Proceedings of the CSEE,2014,34(15):2452-2459.
    [15]韩雪岩,祁坤,段庆亮.起重机用外转子PMSM全域三维瞬态温度场数值计算与分析[J].电机与控制学报,2015,19(5):44-52.HAN Xueyan,QI Kun,DUAN Qingliang.Numerical calculation and analysis of 3D transient temperature field in the exterior-rotor PMSMfor crane[J].Electric Machines and Control,2015,19(5):44-52.
    [16]刘学来,宋永军,金洪文.热工学理论基础[M].北京:中国电力出版社,2008.LIU Xuelai,SONG Yongjun,JIN Hongwen.Thermal engineering theoretical foundation[M].Beijing,China:China Electric Power Press,2008.
    [17]陈彬,李琳,赵志斌.双向全桥DC-DC变换器中大容量高频变压器绕组与磁心损耗计算[J].电工技术学报,2017,32(22):123-133.CHEN Bin,LI Lin,ZHAO Zhibin.Calculation of high-power high-frequency transformer’s copper loss and magnetic core loss in dual-active-bridge DC-DC converter[J].Transactions of China Electrotechaical Society,2017,32(22):123-133.
    [18]NAAYAGI R T,FORSYTH A J,SHUTTLEWORTH R.High-power bidirectional DC-DC converter for aerospace applications[J].IEEETransactions on Power Electronics,2012,27(11):4366-4379.
    [19]袁立强,谷庆,李婧,等.基于开关瞬态波形提取高频隔离变压器漏感参数[J].电工技术学报,2017,32(14):8-16.YUAN Liqiang,GU Qing,LI Jing,et al.Leakage inductance extraction of high frequency isolation transformer based on switching transient waveform[J].Transactions of China Electrotechnical Society,2017,32(14):8-16.
    [20]律方成,郭云翔,李鹏.大功率中频变压器多目标参数优化设计[J].高电压技术,2017,43(1):210-217.LüFangcheng,GUO Yunxiang,LI Peng.Optimization Design for multiple target parameters of high power medium frequency transformer[J].High Voltage Engineering,2017,43(1):210-217.
    [21]陈彬,李琳,赵志斌,等.电感集成式大容量高频变压器精细化设计方法[J].中国电机工程学报,2018,38(5):1356-1368.CHEN Bin,LI Lin,ZHAO Zhibin,et al.Design method of inductor-integrated high-power high-frequency transformers[J].Proceedings of the CSEE,2018,38(5):1356-1368.
    [22]赵振刚,姜飞,李英娜,等.变压器绕组的风冷散热热路模型与FBG测温[J].高电压技术,2017,43(12):3938-3943.ZHAO Zhengang,JIANG Fei,LI Yingna,et al.Air-cooled thermal circuit model and FBG temperature measurement of transformer winding[J].High Voltage Engineering,2017,43(12):3938-3943.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700