用户名: 密码: 验证码:
由低模数水玻璃制备纳米白炭黑的分散剂筛选
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Selection of Dispersant for Preparation of Nano-silica from Low Modulus Water Glass
  • 作者:王百年 ; 阳春娇 ; 宛强 ; 杨保俊 ; 方晓宇
  • 英文作者:WANG Bai-nian;YANG Chun-jiao;WAN Qiang;YANG Bao-jun;FANG Xiao-yu;School of Chemistry and Chemical Engineering,Hefei University of Technology;
  • 关键词:低模数水玻璃 ; 纳米白炭黑 ; 分散剂 ; 筛选
  • 英文关键词:low-modulus water glass;;nano-silica;;dispersant;;selection
  • 中文刊名:GSYT
  • 英文刊名:Bulletin of the Chinese Ceramic Society
  • 机构:合肥工业大学化学与化工学院;
  • 出版日期:2019-03-15
  • 出版单位:硅酸盐通报
  • 年:2019
  • 期:v.38;No.270
  • 语种:中文;
  • 页:GSYT201903056
  • 页数:7
  • CN:03
  • ISSN:11-5440/TQ
  • 分类号:328-334
摘要
以低模数水玻璃为硅源,二氧化碳为沉淀剂,采用碳化法制备纳米白炭黑,以样品的粒度及分散性作为主要考察指标,筛选并确定了较适宜的复配分散剂EDTA-2Na/CTAC,所确定较优分散剂复配比例为EDTA-2Na∶CTAC=1. 0%∶1. 5%。所制备的样品为粒径10~30 nm,分散性良好的无定型纳米白炭黑。采用扫描电子显微镜(SEM)、X射线衍射(XRD)及傅里叶红外光谱(FTIR)对样品进行了表征,并对复配分散剂可能的作用机制进行了初步探讨。
        Nano-silica was prepared by carbonization method using low-modulus water glass as the silicon source and carbon dioxide as the precipitant. Taking the particle size and dispersity of the samples as the selection index,EDTA-2 Na/CTAC was selected as the more suitable compound dispersant with the optimum ratio of EDTA-2 Na∶CTAC = 1. 0%∶1. 5%. The as-prepared amorphous nano-silica was well dispersed with average particle size of about 10-30 nm. The nano-silica samples were characterized by field emission scanning electron microscope (SEM),X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR),and the possible dispersion mechanism of the compound dispersant was discussed.
引文
[1]Ahmad D,Majid A,Hossein M,et al.Acrylic coatings exhibiting improved hardness,solvent resistance and glossiness by using silica nanocomposites[J].Applied Surface Science,2011,257(6):2118-2125.
    [2]Liu P S,Guo S,Lian M M,et al.Improving water-injection performance of quartz sand proppant by surface modification with surface-modified nanosilica[J].Colloids&Surfaces A Physicochemical&Engineering Aspects,2015,470:114-119.
    [3]李凤生.超细粉体技术[M].北京:国防工业出版社,2000:5-6.
    [4]韩静香,佘利娟,翟立新,等.化学沉淀法制备纳米二氧化硅[J].硅酸盐通报,2010,29(3):681-685.
    [5]刘朋程,张旭东,何文,等.白炭黑制备、改性及应用研究[J].山东陶瓷,2009,32(6):19-21.
    [6]王利华.纳米白炭黑的制备及性能表征[D].沈阳:沈阳理工大学,2014.
    [7]张剑宇.沉淀法白炭黑的制备及应用研究[D].武汉:华中科技大学,2013.
    [8]张秋.疏水型纳米白炭黑的制备及表征[D].太原:中北大学,2009.
    [9]杨保俊,于少明,单承湘.蛇纹石综合利用新工艺[J].矿冶工程,2003,23(1):47-49.
    [10]王雅静,魏蕾,李娟娟,等.膨润土制备白炭黑的工艺研究[J].矿产综合利用,2015(5):50-53.
    [11]张德懿,冯辉霞,雒和明,等.利用废弃微硅粉制备纳米Si O2粉体[J].中国非金属矿工业导刊,2009(5):47-49.
    [12]高志强.粉煤灰综合利用研究及工程设计[D].石家庄:河北科技大学,2017.
    [13]方俊.粉煤灰渣湿法制备水玻璃和白炭黑工艺研究[D].淮南:安徽理工大学,2013.
    [14]公旭中,郭占成.钢铁冶金尘渣利用新技术基础[M].北京:科学出版社,2017.
    [15]王佳东,翟玉春,申晓毅.碱溶法提取粉煤灰中的氧化硅[J].轻金属,2008(12):23-25.
    [16]Bi C,Zhang H M,Zhang Y,et al.Fabrication and investigation of Si O2supported sulfated zirconia/Nafion(R)self-humidifying membrane for proton exchange membrane fuel cell applications[J].Journal of Power Sources,2008,184(1):197-203.
    [17]何晓婷.沉淀白炭黑表面改性及减湿行为的研究[D].合肥:合肥工业大学,2014.
    [18]熊剑.沉淀白炭黑的生成机理[J].江西化工,2004(2):31-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700