用户名: 密码: 验证码:
三维电极系统电化学氧化三唑酮
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electro-chemical Oxidation of Aqueous Triadimefon by Three-dimensional Electrode System
  • 作者:张明贤 ; 魏琛 ; 盛贵尚 ; 田宇
  • 英文作者:ZHANG Ming-xian;WEI Chen;SHENG Gui-shang;TIAN Yu;College of Civil Engineering, Guizhou University;
  • 关键词:三维电极系统 ; 电化学氧化 ; 三唑酮 ; 流化状态
  • 英文关键词:three-dimension electrode system;;electro-chemical oxidation;;triadimefon;;fluidized state
  • 中文刊名:GZHX
  • 英文刊名:Guangzhou Chemistry
  • 机构:贵州大学土木工程学院;
  • 出版日期:2019-04-16 11:19
  • 出版单位:广州化学
  • 年:2019
  • 期:v.44;No.180
  • 基金:土木工程一流学科(QYNYL[2017]0013);; 贵州省科技计划项目(黔科合SY字[2014]3045号、黔科合基础[2018]1125号);; 贵州大学引进人才项目(贵大人基合字[2015]18号)
  • 语种:中文;
  • 页:GZHX201902005
  • 页数:7
  • CN:02
  • ISSN:44-1317/O6
  • 分类号:35-41
摘要
以三唑酮(TDF)为目标污染物,以钛基钌铱电极和不锈钢板作阳极、阴极,颗粒活性炭(GAC)为粒子电极构建三维电极系统,通过搅拌实现粒子电极呈流化状态。研究电流密度、TDF初始浓度、GAC投加量、初始pH对三维电极系统的TDF去除效率的影响。研究结果表明:增大电流密度有助于提高TDF去除效率;TDF去除率随初始pH的增大呈现逐渐增大的趋势,碱性条件有助于TDF的去除;当GAC投加量为1~4 g/L时,增大GAC投加量有助于TDF的降解;增大TDF初始浓度会导致去除率的降低。当TDF初始浓度为200μg/L、电流密度为8m A/cm2、初始pH=11、GAC投加量为4 g/L时,电化学氧化10 min时TDF去除率达到99.95%。三维电极系统的传质效率高于二维电极系统,三维电极电化学氧化系统是一种适用于降解TDF的高级氧化技术。
        A three-dimensional electrode system was built to treat triadimefon(TDF), which was consisted of Ruthenium-Iridium coated Titanium as anode, stainless steel plate as cathode and granular activated carbon(GAC)as particle electrode. GAC was kept in fluidized state by stirring. Effects of applied current density, initial TDF concentration, GAC dosage, and initial pH on removal rate of TDF were investigated. Experimental results indicated that the increment of current density improved removal rate of TDF. The removal rate of TDF increased with the raise of initial pH, and alkaline condition favored the TDF degradation. When the GAC dosage varied from 1 g/L to 4 g/L, the removal rate of TDF was at high level when GAC dosage was higher. However, the increment of TDF concentration was lead to the drop of TDF removal rate. After the electrolysis of 10 minutes,removal rate of TDF was reached to 99.95% in the condition that initial TDF concentration of 200 μg/L, current density of 8 mA/cm~2, pH of 11, GAC dosage of 4 g/L. The mass transfer efficiency of three-dimensional electrode system is higher than two-dimensional electrode system. Three-dimensional electrode system is a kind of advanced oxidation technology to degrade aqueous TDF.
引文
[1]Docea AO,Gofita E,Goumenou M,et al.Six months exposure to a real life mixture of 13 chemicals'below individual NOAELs induced non monotonic sex-dependent biochemical and redox status changes in rats[J].Food and Chemical Toxicology,2018(115):470-481.
    [2]魏琛,宋丽婧,杨卫萍,等.贵阳市饮用水源地有机氯农药污染的检测与特征分析[J].环境科学与技术,2016,39(3):131-135.
    [3]尤翔宇.三维电极法处理EDTA废水的基础研究[D].长沙:中南大学,2013.
    [4]张显峰,王德军,赵朝成,等.三维电极电催化氧化法处理废水的研究进展[J].化工环保,2016,36(3):250-255.
    [5]汤哲人,陈泉源,邓东升,等.以黄铜矿作为颗粒三维电极的电Fenton氧化处理维尼纶废水中的COD研究[J].中国环境科学,2017,37(1):95-101.
    [6]Zhang C,Jiang Y,Li Y,et al.Three-dimensional electrochemical process for wastewater treatment:A general review[J].Chemical Engineering Journal,2013(228):455-467.
    [7]Pavithra K G,Kumar P S,Christopher F C,et al.Removal of toxic Cr(Ⅵ)ions from tannery industrial wastewater using a newly designed three-phase three-dimensional electrode reactor[J].Journal of Physics and Chemistry of Solids,2017,110(11):379-385.
    [8]冯壮壮,梁文艳,王海东,等.三维粒子电极填充方式对焦化废水深度处理能耗的影响[J].环境工程,2015,33(2):7-10,47.
    [9]智丹,王建兵,周云惠,等.钛基锡锑阳极电化学氧化去除水中的四环素[J].环境工程学报,2018,12(1):57-64.
    [10]孔令国,王玲,薛建军.负载型三维粒子电极降解甲基橙模拟废水研究[J].中国环境科学,2010,30(4):516-521.
    [11]Shen B,Wen X H,Huang X.Enhanced removal performance of estriol by a three-dimensional electrode reactor[J].Chemical Engineering Journal,2017,327(11):597-607.
    [12]Panizza M,Cerisola G.Direct and mediated anodic oxidation of organic pollutants[J].Chemical Reviews,2009,109(12):6541-6569.
    [13]王兵,舒帮云,任宏洋,等.填充粒子对三维电极处理MDEA污水的影响[J].环境工程学报,2017,11(1):205-210.
    [14]耿榕,赵国华,刘梅川,等.掺硼金刚石膜电极表面产生羟基自由基的原位ESR研究[J].物理化学学报,2010,26(6):1493-1498.
    [15]王璇,黄卫民,刘小波,等.氯离子对苯酚电化学氧化降解过程的影响[J].高等学校化学学报,2011,32(2):361-365.
    [16]梁宏,任阳民,邱阳,等.三维电极法处理含氯废水过程中电解活性氯的研究[J].工业水处理,2017,37(9):37-40.
    [17]戴慧旺,陈建新,苗笑增,等.醇类对UV-Fenton体系羟基自由基淬灭效率的影响[J].中国环境科学,2018,38(1):202-209.
    [18]Berengure R,Sieben J M,Quijada C,et al.Electrocatalytic degradation of phenol on Pt-and Ru-doped Ti/SnO2-Sb anodes in an alkaline medium[J].Applied Catalysis B Environmental,2016(199):394-404.
    [19]何亚鹏.钛基体增强掺硼金刚石电极电催化过程动力学研究[D].长春:吉林大学,2017.
    [20]Zhou M,Liu L,Jiao Y,et al.Treatment of high-salinity reverse osmosis concentrate by electrochemical oxidation on BDD and DSA electrodes[J].Desalination,2011,277(1):201-206.
    [21]李绍峰,石冶,崔崇威.臭氧氧化降解三唑酮的试验[J].环境科学学报,2008,28(7):1381-1388.
    [22]Salazar R,Ureta-Za?artu M S.Mineralization of triadimefon fungicide in water by electro-Fenton and photo electro-Fenton[J].Water Air and Soil Pollution,2012,223(7):4199-4207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700