用户名: 密码: 验证码:
电催化氧化处理难降解废水用电极材料的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in Electrode Materials for Refractory Wastewater Treatment by Electro-catalytic Oxidation
  • 作者:赵媛媛 ; 王德军 ; 赵朝成
  • 英文作者:ZHAO Yuanyuan;WANG Dejun;ZHAO Chaocheng;College of Chemical Engineering,China University of Petroleum (East China);State Key Laboratory of Petroleum Pollution Control;
  • 关键词:电催化氧化 ; 阳极 ; 粒子电极 ; 难降解废水
  • 英文关键词:electro-catalytic oxidation;;anode;;particle electrode;;refractory wastewater
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:中国石油大学(华东)化学工程学院;石油石化污染物控制与处理国家重点实验室;
  • 出版日期:2019-04-10
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家科技重大专项项目(2016ZX05040003)~~
  • 语种:中文;
  • 页:CLDB201907006
  • 页数:8
  • CN:07
  • ISSN:50-1078/TB
  • 分类号:50-57
摘要
随着石油化工、医药等工业的迅速发展,工业废水中难降解物质与日俱增,采用传统的水处理方法已难以达到环保要求。电催化氧化技术主要利用电极表面产生的活性物质羟基自由基进行氧化降解,具有氧化能力强、无需添加化学药剂、无二次污染的优势,而且电催化氧化工艺操作简单、处理条件温和,在处理难降解废水方面具有诸多优势。电催化氧化技术的核心部件是阳极,因此阳极材料的开发一直是研究人员关注的重点。一般要求阳极材料具有析氧电位高、电催化活性高、耐腐蚀、稳定性好、价格低廉等特点。目前常用的阳极材料有钛基金属氧化物阳极(SnO_2电极和PbO_2电极)和合成掺硼金刚石薄层电极,但是这些材料存在使用寿命短、制作成本高等问题。通过改性制备复合金属氧化物阳极可以改善上述问题,常用的改性方法包括掺杂离子、引入中间层、掺杂纳米颗粒、调控电极材料的微观形貌等。改性可以提高电极电催化性能、导电性及稳定性,增大电极的反应面积,延长电极寿命。因此复合金属氧化物阳极的制备是阳极材料研究的重点。在二维电极的基础上引入粒子电极可以构成三维电极系统。在三维电极系统中,粒子电极在电场作用下,会极化形成一个个微型电解槽,极大地增加了反应面积。因而三维电极相比于二维电极具有面体比大、电催化效率更高、能耗更低的优势,因此高催化活性、高稳定性的粒子电极的研制成为了电催化氧化技术领域新的研究方向。目前,常用的粒子电极材料主要有碳材料(活性炭、炭气凝胶等)、金属氧化物(Al_2O_3、Fe_3O_4等)、陶瓷和矿物类等。本文从电催化氧化的机理以及三维电极的工作原理出发,综述了在电催化氧化处理废水中广泛应用的电极材料,包括钛基金属氧化物阳极、合成掺硼金刚石薄层电极,重点介绍了在三维电极系统中使用的粒子电极。并对今后废水处理中电催化氧化电极材料的研究趋势进行了展望,指出提高电催化氧化效率不仅需改进电极材料,还需改善反应器构型及与其他工艺的耦合等,以实现电催化氧化技术的推广应用。
        With the rapid development of petrochemical,pharmaceutical and other industries,the refractory pollutants in industrial wastewater is increasing constantly. Unfortunately,conventional water treatment can no longer achieve satisfactory performance. The emerging technology of electro-catalytic oxidation mainly utilize hydroxyl radicals to degrade pollutant,showing the advantages of strong oxidation ability,no need to add chemical agents,no secondary pollution,simple operation of electro-catalytic oxidation process,and mild treatment condition,which exhibits great potential in treatment of refractory wastewater. Anode plays a dominant role in electro-catalytic oxidation technology,accordingly,anode materials have become the focus of research in this area. Generally,anode materials are required to have high oxygen evolution potential,high electro-catalytic activity,corrosion resistance,favorable stability and low price. Currently,the commonly used anode materials are Ti-based mental oxide anode and boron doped diamond. Whereas,these materials suffer from short service life and high production cost. Fortunately,the above problems can be avoided by preparing composite metal oxide anode through modification. Common modification methods include doping mental ion,introducing interlayer,doping nanoparticle,controlling the micromorphology of electrode materials. The modification contributes to improving the electro-catalytic activity,conductivity,stability of anode materials,increasing the reaction area of the electrode and prolong the electrode life.As a result,the preparation of composite metal oxide anode has been pay more attention in anode materials research.A three-dimensional electrode system can be constructed by introducing a particle electrode on the basis of two-dimensional electrode system.Because particle electrode is polarized in electric field to form a micro-electrolytic cell,thus increase the effective reaction area,the three-dimensional electrode system presents larger surface ratio,higher electro-catalytic efficiency and lower energy consumption compared two-dimensional electrode system. Therefore,the development of high catalytic activity and high stability particle electrode has become a new research direction in the field of electro-catalytic oxidation. At present,The widely used particle electrodes include carbon materials( activated carbon,carbon aerogels,etc.),metal oxides( Al_2O_3,Fe_3O_4,etc.),ceramics and minerals.Based on the mechanism of electro-catalytic oxidation and the working principle of three dimensional electrodes,the electrode materials widely applied in electro-catalytic oxidation treatment of wastewater,including titanium based metal oxide anodes,and thin layer boron doped diamond electrodes are reviewed in this paper. The particle electrode used in the three-dimensional electrode system is emphatically introduced. Finally,the challenges and possible improvement of electrode material for their future application are proposed. It is worth mentioning that improving efficiency of electro-catalytic oxidation technology requires not only the improvement of electrode materials but also the optimization of reactor configuration,coupling with other technologies,thereby achieving extensive application of electro-catalytic oxidation technology.
引文
1 Zhang H, Li Y, Wu X, et al.Waste Management, 2010, 30(11), 2096.
    2 Wu X, Yang X, Wu D, et al.Chemical Engineering Journal, 2008, 138(1-3), 47.
    3 He W, Ma Q, Wang J, et al.Applied Clay Science, 2014, 99, 178.
    4 Xu L, Li M, Xu W.Electrochimica Acta, 2015, 166, 64.
    5 Neti N R, Misra R.Chemical Engineering Journal, 2012, 184, 23.
    6 Duan X, Ren F, Chang L.RSC Advances, 2016, 6(108), 106387.
    7 Sun Z, Zhang H, Wei X, et al.Journal of Solid State Electrochemistry, 2015, 19(8), 2445.
    8 Chen Z, Zhang Y, Zhou L, et al.Journal of Hazardous Materials, 2017, 332, 70.
    9 Sun Y, Li P, Zheng H, et al.Chemical Engineering Journal, 2017, 308, 1233.
    10 Xiao M, Zhang Y.Chemosphere, 2016, 152, 17.
    11 Wang Y, Liu S, Li R, et al.Journal of Environmental Sciences (China), 2016, 43, 54.
    12 Wei L, Guo S, Yan G, et al.Electrochimica Acta, 2010, 55(28), 8615.
    13 Yan L, Ma H, Wang B, et al.Desalination, 2011, 276(1-3), 397.
    14 Wu W, Huang Z H, Lim T T.Applied Catalysis A: General, 2014, 480, 58.
    15 Xu H, Li A P, Qi Q, et al.Korean Journal of Chemical Engineering, 2012, 29(9), 1178.
    16 Zheng Y, Su W, Chen S, et al.Chemical Engineering Journal, 2011, 174(1), 304.
    17 Lv J, Feng Y, Liu J, et al.Applied Surface Science, 2013, 283, 900.
    18 He Y, Huang W, Chen R, et al.Separation and Purification Technology, 2015, 156, 124.
    19 Bai H, He P, Pan J, et al.Journal of Colloid and Interface Science, 2017, 497, 422.
    20 Li M, Zhao F, Sillanp?? M, et al.Separation and Purification Technology, 2015, 156, 588.
    21 Jung K W, Hwang M J, Park D S, et al.Separation and Purification Technology, 2015, 146, 154.
    22 Marco Panizza, Cerisola G.Chemical Reviews, 2009, 109(12), 6541.
    23 Song X, Yang H, Liang Z.Journal of Electrochemistry, 2013, 19(4), 313(in Chinese). 宋秀丽, 杨慧明, 梁镇海. 电化学, 2013, 19(4), 313.
    24 Yang B, Wang J, Jiang C, et al.Chemical Engineering Journal, 2017, 316, 296.
    25 Xu Z, Yu Y, Liu H, et al.Science of the Total Environment, 2017, 579, 1600.
    26 Li L, Huang Z, Fan X, et al.Electrochimica Acta, 2017, 231, 354.
    27 Zhang Q, Guo X, Cao X, et al.Chinese Journal of Catalysis, 2015, 36(7), 975.
    28 Wu W, Huang Z, Hu Z, et al.Separation and Purification Technology, 2017, 179, 25.
    29 Xu Z, Liu H, Niu J, et al.Journal of Hazardous Materials, 2017, 327, 144.
    30 Xu L, Liang G, Yin M.Chemosphere, 2017, 173, 425.
    31 Wang Q, Jin T, Hu Z, et al.Separation and Purification Technology, 2013, 102, 180.
    32 Li X, Li X, Yang W, et al.Electrochimica Acta, 2014, 146, 15.
    33 Patel P S, Bandre N, Saraf A, et al.Procedia Engineering, 2013, 51, 430.
    34 Gurung K, Ncibi M C, Shestakova M, et al.Applied Catalysis B: Environmental, 2018, 221, 329.
    35 Wang H, Wang J.Applied Catalysis B: Environmental, 2007, 77(1-2), 58.
    36 Lin H, Niu J, Ding S, et al.Water Research, 2012, 46(7), 2281.
    37 Chaiyont R, Badoe C, Ponce de León C, et al.Chemical Engineering & Technology, 2013, 36(1), 123.
    38 Berenguer R, Sieben J M, Quijada C, et al.Applied Catalysis B: Environmental, 2016, 199, 394.
    39 Song S, Fan J, He Z, et al.Electrochimica Acta, 2010, 55(11), 3606.
    40 Zhuo Q, Xiang Q, Yi H, et al.Journal of Electroanalytical Chemistry, 2017, 801, 235.
    41 Zhao J, Zhu C, Lu J, et al.Electrochimica Acta, 2014, 118, 169.
    42 Liu Y, Liu H, Ma J, et al.Electrochimica Acta, 2011, 56(3), 1352.
    43 Backhurst J R, Coulson J M, Goodridge F, et al.Journal of the ElectroChemical Society, 1969, 116(11), 1600.
    44 Brown C J, Pletcher D.Journal of Applied Electrochemistry, 1994, 24, 95.
    45 Comninellis C, Pulgarin C. Journal of Applied Electrochemistry, 1993, 23, 108.
    46 Szpyrkowicz L, Naumczyk J, Zilio-Grandi F.Water Research, 1995, 29(2), 517.
    47 Xu L, Zhao H, Shi S, et al.Dyes and Pigments, 2008, 77(1), 158.
    48 Zhao H, Sun Y, Xu L, et al.Chemosphere, 2010, 78(1), 46.
    49 Zhang C, Jiang Y, Li Y, et al.Chemical Engineering Journal, 2013, 228, 455.
    50 Ya X, Chun H, Hans T K, et al.Chemosphere, 2003, 50, 131.
    51 Gedam N, Neti N R.Journal of Environmental Chemical Engineering, 2014, 2(3), 1527.
    52 Kang Z, Li H, Xu Y, et al.Desalination and Water Treatment, 2013, 51(13-15), 2687.
    53 Li X, Zhu W, Wang C, et al.Chemical Engineering Journal, 2013, 232, 495.
    54 Zhou M, Lei L.Chemosphere, 2006, 65(7), 1197.
    55 Qiao Q C. Preparation, characterization of novel electrode materials for packed-bed electrode reactor and the electro-catalytic degradation of acid orange II. Ph.D. Thesis, China University of Mining & Technology, China, 2014 (in Chinese). 乔启成. 新型填充床电化学反应器电极材料制备、表征及对酸性橙II的催化氧化性能研究. 博士学位论文, 中国矿业大学, 2014.
    56 Can W, Yao K H, Qing Z, et al.Chemical Engineering Journal, 2014, 243, 1.
    57 Wang L, Zhao Y, Duan C, et al.Procedia Engineering, 2015, 102, 249.
    58 Cao G, Xu F, Xia S.Journal of the Brazilian Chemical Society, 2013, 24(12), 2050.
    59 Moreno Castilla C, Maldonado Hódar F J.Carbon, 2005, 43(3), 455.
    60 Lv G, Wu D, Fu R.Journal of Hazardous Materials, 2009, 165(1-3), 961.
    61 Chen F, Yu S, Dong X, et al.Journal of Hazardous Materials, 2013, 260, 747.
    62 Wang Y, Hu B, Hu C, et al.Materials Science in Semiconductor Proces- sing, 2015, 40, 744.
    63 Qin Y, Sun M, Liu H, et al.Electrochimica Acta, 2015, 186, 328.
    64 Wei J, Zhang S, Hu Q, et al.Chinese Journal of Environmental Enginee- ring, 2015, 9(4), 1715(in Chinese). 魏金枝, 张少平, 胡琴, 等. 环境工程学报, 2015, 9(4), 1715.
    65 Chen Y, Shi W, Xue H, et al.Electrochimica Acta, 2011, 58, 383.
    66 Kong W, Wang B, Ma H, et al.Journal of Hazardous Materials, 2006, 137(3), 1532.
    67 Liu W, Ai Z, Zhang L.Journal of Hazardous Materials, 2012, 243, 257.
    68 Wang Z, Qi J, Feng Y, et al.Catalysis Communications, 2014, 46, 165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700