用户名: 密码: 验证码:
渔用超高分子量聚乙烯/石墨烯纳米复合纤维的结构与蠕变性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structure and creep properties of UHMWPE/GR fishing nanocomposite fibers
  • 作者:周文博 ; 余雯雯 ; 石建高
  • 英文作者:ZHOU Wenbo;YU Wenwen;SHI Jiangao;College of Marine Science, Shanghai Ocean University;East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences;
  • 关键词:渔用 ; 超高分子量聚乙烯 ; 石墨烯 ; 纳米复合 ; 结构与性能 ; 蠕变
  • 英文关键词:fishing;;UHMWPE;;graphene;;nanocomposite;;structure and properties;;creep
  • 中文刊名:SCKX
  • 英文刊名:Journal of Fisheries of China
  • 机构:上海海洋大学海洋科学学院;中国水产科学研究院东海水产研究所;
  • 出版日期:2018-09-03 15:16
  • 出版单位:水产学报
  • 年:2019
  • 期:v.43
  • 基金:国家自然科学基金(31502213);; 中国水产科学研究院基本科研业务费专项(2018 HY-XKQ03-4);; 现代农业产业技术体系专项(CARS-50);; 浙江海洋大学“水产”省一流学科开放课题(20160014);; 泰山英才领军人才专项~~
  • 语种:中文;
  • 页:SCKX201903015
  • 页数:9
  • CN:03
  • ISSN:31-1283/S
  • 分类号:151-159
摘要
采用熔融纺丝法制备渔用超高分子量聚乙烯(UHMWPE)/石墨烯(GR)纳米复合纤维,研究了GR含量对UHMWPE纤维结构、热性能、力学性能与蠕变性能的影响。结果显示,GR在UHMWPE纤维基体中的分散情况以纳米级厚度为主,当GR含量为1‰和3‰时,GR在UHMWPE纤维基体中分散均匀,当GR含量为5‰时,GR在UHMWPE纤维基体中出现大的团聚体。与纯UHMWPE纤维相比,UHMWPE/GR纳米复合纤维的断裂强度和结节断裂强度均有显著提高,表明一定含量的GR可有效增强UHMWPE的抗蠕变性能且降低其蠕变速率。当GR含量为3‰时,断裂强力提高了31.9%,蠕变率降低了27.3%。当UHMWPE经GR改性后,纳米粒子与聚乙烯链段相互作用力增强,晶区附近受限的非晶区链段增多,α转变峰逐渐增强增宽。研究表明,通过纳米改性技术,可以显著提高超高分子量聚乙烯纤维的力学性能和抗蠕变性能,为实现渔用材料的高性能化提供理论依据。
        The ultra-high molecular weight polyethylene(UHMWPE)/graphene(GR) nanocomposite fibers were prepared by melt-spinning. The effects of GR contents on the structure, thermal properties, mechanical properties and creep properties of UHMWPE fibers were studied. The results show that the GR in UHMWPE fiber matrix is uniformly disperse at nanometer-scale thickness. When the graphene content increase to 5‰, the GR shows large agglomerates in UHMWPE fiber matrix. Compared with that of pure UHMWPE fiber, the tensile strength and knot breaking strength of GR-modified nanocomposite fibers are significantly increased. Introducing a certain content of GR can effectively enhance the creep resistance of UHMWPE and reduce its creep rate. When the nanographene content is 3‰, the breaking strength increases by 31.9% and the creep rate decreases by 27.3%. When the nano-GR was being introduced to UHMWPE, the interaction between the nanoparticles and the polyethylene segment was enhanced, and the limited amorphous regions near the grain boundary increased, and the α transition peak increased and broadened gradually. The nano-modification technology can significantly improve the mechanical properties and creep resistance of ultra-high molecular weight polyethylene fibers. The results provide a theoretical basis for the high performance of fishing materials.
引文
[1]Debnath S,Ranade R,Wunder S L,et al.Chemical surface treatment of ultrahigh molecular weight polyethylene for improved adhesion to methacrylate resins[J].Journal of Applied Polymer Science,2010,96(5):1564-1572.
    [2]Gao P,Mackley M R.Surface treatment of ultra-high molecular weight polyethylene to enhance adhesion and conductivity properties[J].Polymer,1992,33(19):4075-4080.
    [3]HofstéJ M,Schut J A,Pennings A J.The effect of chromic acid treatment on the mechanical and tribological properties of aramid fibre reinforced ultrahigh molecular weight polyethylene composite[J].Journal of Materials Science:Materials in Medicine,1998,9(10):561-566.
    [4]黄安平,朱博超,贾军纪,等.超高分子量聚乙烯的研发及应用[J].高分子通报,2012(4):127-132.Huang A P,Zhu B C,Jia J J,et al.Research progress and application of ultra high molecular weight polyethylene[J].Polymer Bulletin,2012(4):127-132(in Chinese).
    [5]刘英,刘萍,陈成泗,等.超高分子量聚乙烯的特性及应用进展[J].国外塑料,2005,23(11):36-40.Liu Y,Liu P,Chen C S,et al.Characteristic and application progress of UHMWPE[J].World Plastics,2005,23(11):36-40(in Chinese).
    [6]王鲁民.超强纤维材料的试验研究及其在渔业中的应用前景[J].水产学报,2000,24(5):480-484.Wang L M.Advances in the experiment study of ultrahigh strength fibers and its application in fishery[J].Journal of Fisheries of China,2000,24(5):480-484(in Chinese).
    [7]石建高,孙满昌,余雯雯,等.渔业装备与工程用合成纤维绳索[M].北京:海洋出版社,2016:1-57.Shi J G,Sun M C,Yu W W,et al.Fishing equipment and engineering synthetic fiber rope[M].Beijing:China Ocean Press,2016:1-57(in Chinese).
    [8]石建高,孙满昌,贺兵,等.海水抗风浪网箱工程技术[M].北京:海洋出版社,2016:64-82.Shi J G,Sun M C,He B.Seawater anti-storm cage engineering technology[M].Beijing:China Ocean Press,2016:64-82(in Chinese).
    [9]李艳芹,朱博超,黄安平,等.超高分子量聚乙烯研究进展及应用领域[J].广州化工,2011,39(2):19-21.Li Y Q,Zhu B C,Huang A P,et al.Research progress and application of ultra high molecular weight polyethylene[J].Guangzhou Chemical Industry,2011,39(2):19-21(in Chinese).
    [10]王磊,闵明华,石建高,等.UHMWPE纤维研发与生产现状[J].材料科学,2013,3(5):192-198.Wang L,Min M H,Shi J G,et al.Research progress and production status of ultra-high molecular weight polyethylene fiber[J].Material Science,2013,3(5):192-198 (in Chinese).
    [11]苏荣锦,黄安民.超高分子量聚乙烯改性研究进展[J].塑料科技,2010,38(6):93-97.Su R J,Huang A M.Progress in modification of ultra high molecular weight polyethylene[J].Plastics Science and Technology,2010,38(6):93-97(in Chinese).
    [12]李超勤,刘光烨,涂劲松.塑料改性技术研究进展[J].塑料,2000,29(4):35-37.Li C Q,Liu G Y,Tu J S.Advances of plastics modification technology[J].Plastics,2000,29(4):35-37(in Chinese).
    [13]路琴.超高分子量聚乙烯的性能改进及应用[J].农机化研究,2005(6):232-234.Lu Q.Properties and modification of ultra-high molecular weight polyethylene and its application[J].Journal of Agricultural Mechanization Research,2005(6):232-234(in Chinese).
    [14]明艳,贾润礼.超高分子量聚乙烯的改性[J].塑料科技,2002(2):31-33.Ming Y,Jia R L.Modification of UHMWPE[J].Plastics Science and Technology,2002(2):31-33(in Chinese).
    [15]陈聚文,潘婉莲,黎倩倩,等.超高分子量聚乙烯纤维蠕变性能改性研究[J].合成纤维,2003,32(2):15-17.Chen J W,Pan W L,Li Q Q,et al.Investigation on modification of creep behavior of UHMWPE fiber[J].Synthetic Fiber in China,2003,32(2):15-17(in Chinese).
    [16]王萍,王新威,张玉梅,等.干法与湿法凝胶纺丝UHMWPE纤维的结构与性能[J].合成纤维工业,2014,37(4):67-70.Wang P,Wang X W,Zhang Y M,et al.Structure and properties of UHMWPE fibers prepared by dry and wet gel spinning processes[J].China Synthetic Fiber Industry,2014,37(4):67-70(in Chinese).
    [17]刘海,周玉惠,胡晓方,等.凝胶纺丝法制备超高分子量聚乙烯纤维延伸性能的研究[J].胶体与聚合物,2008,26(1):20-22.Liu H,Zhou Y H,Hu X F,et al.The drawing property research of gel-spun UHMWPE fiber[J].Chinese Journal of Colloid&Polymer,2008,26(1):20-22(in Chinese).
    [18]王非,刘丽超,薛平.超高分子量聚乙烯纤维制备技术进展[J].塑料,2014,43(5):31-35.Wang F,Liu L C,Xue P.Research progress in preparation technology of ultra-high molecular weight polyethylene fiber[J].Plastics,2014,43(5):31-35(in Chinese).
    [19]肖明明,于俊荣,朱加尖,等.纺丝溶液浓度对UHMWPE冻胶纤维萃取及拉伸性能的影响[J].合成纤维工业,2011,34(4):1-4.Xiao M M,Yu J R,Zhu J J,et al.Effect of spinning solution concentration on extraction and tensile properties of UHMWPE gel fibers[J].China Synthetic Fiber Industry,2011,34(4):1-4(in Chinese).
    [20]甄万清,王庆昭,吴进喜,等.熔融纺丝法制备UHMWPE/MMT复合纤维的研究[J].合成纤维,2011,40(3):5-9.Zhen W Q,Wang Q Z,Wu J X,et al.The preparation of UHMWPE/MMT composite fiber by melt spinning process[J].Synthetic Fiber in China,2011,40(3):5-9(in Chinese).
    [21]张强,王庆昭,陈勇.熔纺UHMWPE纤维在拉伸过程中的结构与力学性能[J].高分子材料科学与工程,2014,30(3):80-84.Zhang Q,Wang Q Z,Chen Y.Structure and tensile properties of melt spun UHMWPE fibers in drawing process[J].Polymeric Materials Science and Engineering,2014,30(3):80-84(in Chinese).
    [22]Xia F N,Mueller T,Lin Y M,et al.Ultrafast graphene photodetector[J].Nature Nanotechnology,2009,4(12):839-843.
    [23]Kuila T,Bose S,Mishra A K,et al.Chemical functionalization of graphene and its applications[J].Progress in Materials Science,2012,57(7):1061-1105.
    [24]Lee C G,Wei X D,Kysar J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
    [25]Balandin A A,Chosh S,Bao W Z,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.
    [26]Jose S,Aprem A S,Francis B,et al.Phase morphology,crystallisation behaviour and mechanical properties of isotactic polypropylene/high density polyethylene blends[J].European Polymer Journal,2004,40(9):2105-2115.
    [27]陈聚文,潘婉莲,于俊荣,等.纤维分子结构与蠕变性能的关系[J].高分子材料科学与工程,2004,20(2):114-117.Chen J W,Pan W L,Yu J R,et al.Relationship between molecular structure and creep properties[J].Polymeric Materials Science and Engineering,2004,20(2):114-117(in Chinese).
    [28]Wang X,Gong L X,Tang L C,et al.Temperature dependence of creep and recovery behaviors of polymer composites filled with chemically reduced graphene oxide[J].Composites-Part A:Applied Science and Manufacturing,2015,69:288-298.
    [29]Sirotkin R O,Brooks N W.The dynamic mechanical relaxation behavior of polyethylene copolymers cast from solution[J].Polymer,2001,42(24):9801-9808.
    [30]Pegoretti A,Ashkar M,Migliaresi C,et al.Relaxation processes in polyethylene fibre-reinforced polyethylenecomposites[J].Composites Science and Technology,2000,60(8):1181-1189.
    [31]Alberola N,Cavaille J Y,Perez J.Mechanicalγandβrelaxations in polyethylene-I glass transitions ofpolyethylene[J].European Polymer Journal,1992,28(8):935-348.
    [32]Tang L C,Wang X,Gong L X,et al.Creep and recovery of polystyrene composites filled with grapheneadditives[J].Composites Science and Technology,2014,91:63-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700