用户名: 密码: 验证码:
H_mTiSi_n(m=1~2;n=2~8)团簇结构、电子性质和红外光谱的密度泛函理论研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Density Functional Investigation of Structural,Electronic and Spectral Properties of the H_mTiSi_n(m=1~2;n=2~8)Clusters
  • 作者:李小军 ; 卢雪 ; 任宏江 ; 宋瑞娟
  • 英文作者:LI Xiao-jun;LU Xue;REN Hong-jiang;SONG Rui-juan;Xi'an Engineering Research Center of Environmental Detection and Food Safety,School of Chemical Engineering,Xi'an University;
  • 关键词:团簇 ; 氢化物 ; 几何结构 ; 电子性质 ; 红外光谱
  • 英文关键词:Cluster;;Hydride;;Geometric structure;;Electronic property;;Infrared spectra
  • 中文刊名:GUAN
  • 英文刊名:Spectroscopy and Spectral Analysis
  • 机构:西安市环境与食品安全检测工程研究中心西安文理学院化学工程学院;
  • 出版日期:2019-01-15
  • 出版单位:光谱学与光谱分析
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(21603173,21643014);; 陕西省自然科学基金项目(2016JQ5110);; 西安市科技计划项目(2016CXWL16,2016CXWL02,CXY1531WL15);; 西安文理学院创新改革试点项目(2016105GG/ZT05(4))资助
  • 语种:中文;
  • 页:GUAN201901013
  • 页数:8
  • CN:01
  • ISSN:11-2200/O4
  • 分类号:71-78
摘要
近些年,由于硅半导体材料在微电子工业中的潜在应用,其理论和实验研究备受人们广泛关注。尤其是过渡金属掺杂的硅团簇材料在物理化学性质方面表现了极好的稳定性。这些主要归因于过渡金属含有未填满的d轨道电子,可以填充硅团簇表面的空轨道,减少团簇表面的悬挂键,进而提高整个掺杂硅团簇的结构稳定性,同时产生各种特殊光学、磁性和超导等性质。采用密度泛函理论DFT-B3LYP方法对H_mTiSi_n(m=1~2;n=2~8)团簇的几何结构和电子性质进行了理论计算,讨论了Ti掺杂硅团簇TiSin(n=2~8)及其氢化团簇基态结构的变化规律、解离通道和HOMO-LUMO能隙等特征。结果表明,随着Si原子数目的增加,在TiSin(n=2~8)团簇中其掺杂Ti原子依次吸附在团簇的棱、面及结构内部。当在掺杂团簇表面吸附氢原子时,都优于吸附在团簇的硅原子上,而且绝大多数的氢化结构采纳了TiSin团簇的骨架构型。解离能和HOMO-LUMO能隙的分析结果表明在团簇表面吸附两个H原子时能够明显提高整个团簇的结构稳定性。二阶能量差分的研究发现TiSi2和TiSi6团簇相对其他团簇具有较高的稳定性,同时两个H1TiSi7和H2TiSi7氢化团簇的稳定性更高。此外,模拟了这些氢化团簇的红外振动特征峰,对主要特征峰进行了归属。这些研究将为过渡金属掺杂硅基团簇材料的实验制备和表征提供重要的理论参考。
        In recent years,the silicon semiconductor clusters have experimentally and theoretically attracted great attention because of their potential applications regarded as cluster-assembled optoelectronic materials.Especially,the appropriate transition-metal atoms can stabilize the silicon clusters by doping to the surface of clusters,accordingly novel physical and chemical properties of transition-metal doped silicon clusters will be produced,e.g.,optical property,magnetic property,and superconductor,etc.In this work,the geometric structures and electronic properties of H_mTiSi_n(m=1~2;n=2~8)clusters are systematically studied using the density functional theory(DFT)B3LYP method,and the changing regularity,dissociation channels and HOMO-LUMO gaps of the ground-state structures of the TiSin(n=2~8)clusters and their hydrides are discussed in detail.The results show that the Ti atom in the TiSin(n=2~8)clusters will gradually move from convex to surface and to interior sites along with the increasing number of the Si atom.For most of hydrogenated H_mTiSi_nclusters,their stable structures keep the structural framework of TiSinclusters,while the H atoms prefer energetically to be attached on the silicon atoms,rather than the Ti atom.The analysis of dissociation energies as well as HOMO-LUMO gaps show that the adsorption of two H atoms on clusters' surfaces will eliminate the number of dangling bonds in these clusters,and largely improve the structural stability of clusters.The second-order energy differences(Δ2E)can explore the chemical stability of the magic clusters,and it is found that theΔ2Eis very sensitive to the cluster size,and has the local oscillation behaviors along with the increasing cluster size,in which the TiSi2 and TiSi6clusters possess relatively higher stabilities than their neighboring ones,whereas the hydrogenated H1TiSi7 and H2TiSi7clusters are the most stable in all of clusters studied here.In addition,we simulate the infrared spectra of these hydrogenated clusters,and assign the main vibrational peaks for further experimental references.These studies will provide significant theoretical references for further experimental synthesis and measurements of the transition metal-doped siliconbased nanomaterials.
引文
[1] Vogel M,Kasigkeit C,Hirsch K,et al.Phys.Rev.B,2012,85(19):195454.
    [2] Lyon J T,Gruene P,Fielicke A,et al.J.Am.Chem.Soc.,2009,131(3):1115.
    [3] Haertelt M,Lyon J T,Claes P,et al.J.Chem.Phys.,2012,136(6):064301.
    [4] LIN Lin,YANG Ju-cai(林琳,杨桔材).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2016,36(9):3026.
    [5] Li X J,Li C P,Yang J C,et al.Int.J.Quantum Chem.,2009,109(6):1283.
    [6] Kong X Y,Deng X J,Xu H G,et al.J.Chem.Phys.,2013,138(24):244312.
    [7] Lu S J,Cao G J,Xu X L,et al.Nanoscale,2016,8(47):19769.
    [8] Huang X M,Lu S J,Liang X Q,et al.J.Phys.Chem.C,2015,119(20):10987.
    [9] Yang J C,Feng Y T,Xie X H,et al.Theor.Chem.Acc.,2016,135:204.
    [10] Hou L Y,Yang J C,Liu Y M.J.Mol.Model.,2017,23:117.
    [11] Li X J,Yan Z J,Li S N.J.Comput.Chem.,2016,37(25):2316.
    [12] Grubisic A,Ko Y J,Wang H,et al.J.Am.Chem.Soc.,2009,131(30):10783.
    [13] Li Y,Lyon J T,Woodham A P,et al.Chem.Phys.Chem.,2014,15(2):328.
    [14] Li Y,Lyon J T,Woodham A P,et al.J.Chem.Phys.,2013,138(19):194301.
    [15] Huang X M,Xu H G,Lu S J,et al.Nanoscale,2014,6(24):14617.
    [16] Li X J,Claes P,Hrtelt M,et al.Phys.Chem.Chem.Phys.,2016,18(8):6291.
    [17] Peng Q,Shen J.J.Chem.Phys.,2008,128(8):084711.
    [18] Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian,Inc.,Wallingford CT,2009.
    [19] Becke A D.J.Chem.Phys.,1993,98(7):5648.
    [20] Li X J.Spectrochim.Acta Part A,2017,185:149.
    [21] Li X J,Hopmann K H,HudecováJ,et al.J.Phys.Chem.A,2013,117(8):1721.
    [22] Li X J.J.Mater.Chem.C,2018,6(28):7576.
    [23] Lu J,Yang J C,Kang Y L,et al.J.Mol.Model.,2014,20:2114.
    [24] Yang J C,Wang J,Hao Y R.Theor.Chem.Acc.,2015,134:81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700