用户名: 密码: 验证码:
基于求解双侧对流条件Stefan问题的高炉炉缸凝壳生成过程数学模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A mathematical model for skull buildup process in blast furnace hearth based on solving a Stefan problem with bilateral convective boundary conditions
  • 作者:陈立军 ; 宋清诗 ; 曲迎霞
  • 英文作者:Chen Lijun;Song Qingshi;Qu Yingxia;Baoshan Iron & Steel Co.,Ltd;School of Metallurgy,Northeastern University;
  • 关键词:高炉炉缸 ; 凝壳 ; 对流换热 ; Stefan问题 ; 准稳态假设
  • 英文关键词:blast furnace hearth;;skull;;convective heat transfer;;Stefan problem;;quasi-steady state assumption
  • 中文刊名:HUJI
  • 英文刊名:Journal of Materials and Metallurgy
  • 机构:宝山钢铁股份有限公司;东北大学冶金学院;
  • 出版日期:2019-03-05
  • 出版单位:材料与冶金学报
  • 年:2019
  • 期:v.18;No.69
  • 基金:国家自然科学基金资助(51604068,5150456);; 中央高校基本科研业务费专项资金资助(N150203004)
  • 语种:中文;
  • 页:HUJI201901004
  • 页数:6
  • CN:01
  • ISSN:21-1473/TF
  • 分类号:18-22+34
摘要
高炉炉缸凝壳的生成可视为双侧均为对流条件的Stefan问题.基于求解这类Stefan问题,结合理论分析和数值计算方法,建立了能够准确描述高炉炉缸内衬热面凝壳生成过程的数值传热模型,并推导了相应的准稳态模型.借助相应条件下的实验测量值对上述两种模型进行了校验.结果表明,相比于准稳态模型,数值传热模型针对双侧对流条件Stefan问题的计算精度更高.最后,为展示数值传热模型的应用性,以典型陶瓷杯结构炉缸为例,研究了陶瓷杯壁厚度对炉缸热面凝壳生成过程的影响.
        Skull buildup process in the blast furnace hearth can be regarded as a Stefan problem with bilateral convection boundary conditions. Based on solving this type of Stefan problem,a numerical heat transfer(NHT) model accurately describing the skull buildup process was developed by integrating theoretical analyses with numerical calculation methods. Also,a corresponding quasi-steady state model was derived. The two mathematical models were verified by using the experimental data under specified conditions. The results indicated that,with respect to the Stefan problem with bilateral convective boundary conditions,the accuracy of the NHT model is higher than that of the quasi-steady state model. Finally,in order to demonstrate the practical applicability of the NHT model,influence of the ceramic cup sidewall thickness on skull buildup process in a ceramic cup synthetic hearth was investigated.
引文
[1] Zagaria M,Dimastromatteo V,Colla V. Monitoring erosion and skull profile in blast furnace hearth[J]. Ironmaking and Steelmaking, 2010,37(3):229-234.
    [2] Silva S N,Vernilli F,Justus S M,et al. A methodology to investigate the wear of blast furnace hearth carbon refractory lining[J]. Materials and Corrosion,2013,64(11):1032-1038.
    [3] Jiao Ke-xin,Zhang Jian-liang,Liu Zheng-jian,et al.Analysis of blast furnace hearth sidewall erosion and protective layer formation[J]. ISIJ International,2016,56(11):1956-1963.
    [4] Li Yang-long,Cheng Shu-sen,Wang Zhi-feng. Corrosion behavior of ceramic cup of blast furnace hearth by liquid iron and slag[J]. High Temperature Materials and Processes,2016, 35(9):941-948.
    [5]张先棹.冶金传输原理[M].北京:冶金工业出版社,2005:342-363.(Zhang Xian-zhao. Transport phenomena in metallurgy[M].Beijing:Metallurgical Industry Press,2005:342-363.)
    [6] Hahn D W,Ozisik M N. Heat conduction[M]. New Jersey:John Wiley&Sons, 2012:452-495.
    [7] Wu Tong,Cheng Su-sen. Model of forming-accretion on blast furnace copper stave and industrial application[J].Journal of Iron and Steel Research,International,2012,19(7):1-5.
    [8] Jiao Ke-xin,Zhang Jian-liang,Zuo Hai-bin,et al.Calculation and analysis the influence of the cooling water velocity and hot metal circulation to the long life blast furnace[J]. Journal of Materials Science and Engineering B,2015,5(1-2):36-41.
    [9]刘伟强.高炉炉缸自保护铁基凝壳生成动力学研究[D].沈阳:东北大学,2017.(Liu Wei-qiang. A study on building kinetics of the protective iron-based skull in blast furnace hearth[D].Shenyang:Northeastern University,2017.)
    [10] Gaskell D R. An introduction to transport phenomena in materials engineering[M]. New Jersey:Momentum Press,2012:401-416.
    [11] Siegel R,Savino J M. Experimental and analytical study of the transient solidification of a warm liquid flowing over a chilled flat plate[EB/OL].(1967-06-01)[2017-10-09].https://ntrs. nasa. gov/archive/nasa/casi. ntrs. nasa. gov.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700