用户名: 密码: 验证码:
水下采油树生产模块通道多相冲蚀数值分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Analysis of Multiphase Erosion of Subsea X-tree Production Line
  • 作者:朱军龙 ; 段梦兰 ; 叶天源 ; 徐时贤 ; 脱浩虎
  • 英文作者:Zhu Junlong;Duan Menglan;Ye Tianyuan;Xu Shixian;Tuo Haohu;Offshore Oil & Gas Research Center,China University of Petroleum(Beijing);Chongqing Qianwei Offshore Petroleum Engineering & Equipment Co.,Ltd.;
  • 关键词:水下采油树 ; 生产通道 ; 冲蚀率 ; 入射角度 ; 冲蚀深度 ; Fluent
  • 英文关键词:subsea X-tree;;production line;;erosion rate;;incidence angle;;erosion depth;;Fluent
  • 中文刊名:SYJI
  • 英文刊名:China Petroleum Machinery
  • 机构:中国石油大学(北京)海洋油气研究中心;重庆前卫海洋石油工程设备有限责任公司;
  • 出版日期:2016-03-10
  • 出版单位:石油机械
  • 年:2016
  • 期:v.44;No.445
  • 基金:国家发改委2013年海洋工程装备研发及产业化专项“水下采油树研发及产业化”(发改办高技[2013]1764号)
  • 语种:中文;
  • 页:SYJI201603013
  • 页数:5
  • CN:03
  • ISSN:42-1246/TE
  • 分类号:64-68
摘要
冲蚀是水下采油树生产通道失效的主要因素。通过对冲蚀机理的研究,分析了冲蚀的本质和能量平衡,并对冲蚀的影响因素进行了分析。采用Fluent软件建立了水下采油树生产模块通道模型,对模型的内部流场进行了分析。分析结果表明,冲蚀的本质是机械磨损和化学、电化学腐蚀,主要受流体的流速、入射角度和磨粒特性等因素的影响;水下采油树生产模块通道冲蚀最严重部位在相贯线上和外拱壁处;冲蚀率和冲蚀深度随流体速度的增大而增大,一定速度后呈指数增长,随颗粒直径的增大而减小,随颗粒体积分数的增大而增大。研究结果可为有效防治冲蚀和机械结构优化提供参考。
        Erosion is a main factor causing failure of subsea X-tree production line. By studying the mechanism of erosion,this paper analyzed the essence and energy balance of erosion,as well as erosion factors. Subsea X-tree production line model was established with Fluent in order to analyze the internal flow field. The results show that erosion is essentially mechanical wear or chemical/electrochemical corrosion,which is mainly affected by fluid velocity,incidence angle and abrasive characteristics and other factors. The worst erosion of the subsea X-tree production line often occurs on the intersecting line and outside arch wall. The erosion rate and depth increase as the fluid velocity increases,and increase exponentially after the velocity reaches a certain level. Furthermore,the erosion rate and depth decrease with the increase of particle diameter,and increase with the increase of particle volume fraction.
引文
[1]茅俊杰.气液两相流管道冲刷腐蚀的研究[D].济南:山东大学,2012.
    [2]马颖,任峻,李元东,等.冲蚀磨损研究的进展[J].兰州理工大学学报,2005,31(1):21-25.
    [3]卢斌.喷射式冲蚀实验装置研制及油井管柱抗冲蚀性能研究[D].西安:西安石油大学,2012.
    [4]董刚,张九渊.固体粒子冲蚀磨损研究进展[J].材料科学与工程学报,2003,21(2):307-312.
    [5]赵旭东,王定亚,刘文霄,等.基于CFD的水下采油树生产通道流动数值模拟[J].石油机械,2014,42(11):105-108.
    [6]丁矿,朱宏武,张建华,等.直角弯管内液固两相流固体颗粒冲蚀磨损分析[J].油气储运,2013,32(3):241-246.
    [7]Finnie I,Mcfadden D H.On the velocity dependence of the ero sion of ductilemetals by solid particles at low angles of incidence[J].Wear,1978,48(1):181-190.
    [8]Bitter J G A.A study of erosion phenomena[J].Wear,1963,6(1):5-21.
    [9]Misra A,Finnie I.On the size effect in abrasive and erosion wear[J].Wear,1981,65(3):359-373.
    [10]Zhang Y,Reuterfors E P,Mclaury B S,et al.Comparison of computed and measured particle velocities and erosion in water and air flows[J].Wear,2007,263:330-338.
    [11]Pyboyina.Experimental investigation and computational fluid dynamics simulations of erosion on electrical resistance probes[D].Tulsa:University of Tulsa,2006.
    [12]汪爽,倪超,严梦姗.气体钻井井口装置冲蚀规律研究及优化配置[J].钻采工艺,2014,37(5):8-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700