用户名: 密码: 验证码:
大规模水力压裂过程中超级13Cr油管冲蚀预测模型建立
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Erosion prediction model for super 13Cr tubing during large-scale hydraulic fracturing
  • 作者:王治国 ; 杨向同 ; 窦益华 ; 罗生俊
  • 英文作者:WANG Zhiguo;YANG Xiangtong;DOU Yihua;LUO Shengjun;School of Mechanical Engineering, Xi'an Shiyou University;PetroChina Tarim Oilfield Company;Well Testing Company,Xibu Drilling Engineering Inc.CNPC;
  • 关键词:超级13Cr油管 ; 冲蚀模型 ; 水力压裂 ; 冲蚀角度 ; 流速
  • 英文关键词:the super 13Cr tubing;;erosion model;;hydraulic fracturing;;erosion angle;;flow speed
  • 中文刊名:SYZC
  • 英文刊名:Oil Drilling & Production Technology
  • 机构:西安石油大学机械工程学院;中国石油塔里木油田分公司;中国石油西部钻探工程有限公司试油公司;
  • 出版日期:2016-07-20
  • 出版单位:石油钻采工艺
  • 年:2016
  • 期:v.38;No.226
  • 基金:国家科技重大专项“超深超高压气井油套管柱安全评价与控制技术研究”(编号:2011ZX05046-03-07);; 陕西省自然科学基础研究计划项目“大排量高砂比水力压裂管柱冲蚀机理研究”(编号:2015JM5223)
  • 语种:中文;
  • 页:SYZC201604014
  • 页数:6
  • CN:04
  • ISSN:13-1072/TE
  • 分类号:72-77
摘要
大规模水力压裂过程中,高速流动的携砂压裂液会对油管内壁造成冲蚀,导致油管壁厚减薄,承载能力降低。为了准确预测大规模水力压裂过程中油管的冲蚀速率,利用自制的冲蚀实验装置,采用0.2%胍胶压裂液与40/70目石英砂混合形成的液固两相流体,实验研究了冲蚀角度和流体流速对超级13Cr油管冲蚀速率的影响,建立了适用于大排量高砂比压裂的冲蚀预测模型,运用新模型,可以比较准确地预测注入总液量和排量对超级13Cr油管壁厚损失的影响。算例分析结果表明,大规模压裂过程中,超级13Cr油管的壁厚损失范围为0.2~1.3 mm,应该控制排量和砂含量,防止油管壁由于冲蚀而导致安全性降低。
        Sand-carrying fracturing fluid flowing at high-speed during large-scale hydraulic fracturing can erode inner walls of tubing, resulting in thinning of tubing sidewall and reduction of tubing loading capacity. To predict erosion rate of tubing during largescale hydraulic fracturing accurately, the impacts of erosion angle and fluid flow speed on erosion rate of the super 13 Cr tubing have been tested with an erosion testing unit made by ourselves, solid-liquid dual-phase fluid made of 0.2 % guar fracturing fluid and quartz sand of 40/70 meshes, and an erosion prediction model for fracturing with large discharging rate and high sand proportion has been constructed. By using the newly constructed model, impact of total fluid volume and discharging rate on wall thickness loss of the super 13 Cr tubing can be predicted accurately. Case study results show the super 13 Cr tubing may lose sidewall thicknesses of 0.2-1.3 mm during large-scale fracturing. Therefore, cares shall be taken to control discharging rate and sand content properly to maintain necessary safety performance of tubing sidewalls in case of erosion.
引文
[1]薛承瑾.页岩气压裂技术现状及发展建议[J].石油钻探技术,2011,39(3):24-29.XUE Chengjin.Technical advance and development proposals of shale gas fracturing.[J].Petroleum Drilling Techniques,2011,39(3):24-29.
    [2]窦益华,许爱荣,张福祥,张绍礼.高温高压深井试油完井问题综述[J]石油机械,2008,36(9):140-142.DOU Yihua,XU Airong,ZHANG Fuxiang,ZHANG Shaoli.Review on the well completion of HPHT and deep well[J].China Petroleum Machinery,2008,36(9):140-142.
    [3]姚小飞,谢发勤,吴向清,王毅飞.Cl~-浓度对超级13Cr油管钢应力腐蚀开裂行为的影响[J].材料导报,2012,26(18):38-41,45.YAO Xiaofei,XIE Faqin,WU Xiangqing,WANG Yifei.Effects of Cl~(-1)concentration on stress corrosion cracking behaviours of superl3Cr tubing steel[J].Materials Review,2012,26(18):38-41,45.
    [4]张国超,林冠发,张涓涛.超级13Cr油套管钢的点蚀行为研究[J].焊管,2013,36(7):20-24.ZHANG Guochao,LIN Guanfa,ZHANG Juantao.Study on the pitting corrosion behavior of super 13Cr casing and tubing steel[J].Welded Pipe and Tube,2013,36(7):20-24.
    [5]练章华,魏臣兴,宋周成,丁亮亮,李锋,韩玮.高压高产气井屈曲管柱冲蚀损伤机理研究[J].石油钻采工艺,2012,34(1):6-9.LIAN Zhanghua,WEI Chenxing,SONG Zhoucheng,DING Liangliang,LI Feng,HAN Wei.Erosion damage mechanism of buckled tubing in high pressure and high production gas wells[J].Oil Drilling&Production Technology,2012,34(1):6-9.
    [6]林铁军,练章华,陈世春,李敏,陈锋.气体钻井中气体携岩对钻杆的冲蚀机理研究[J].石油钻采工艺,2010,32(4):1-4.LIN Tiejun,LIAN Zhanghua,CHEN Shichu,LI Min,CHEN Feng.Study on drill pipe erosion of gas carrying cuttings in gas drilling[J].Oil Drilling&Production Technology,2010,32(4):1-4.
    [7]张福祥,巴旦,刘洪涛,李臻,窦益华.压裂过程超级13Cr油管冲刷腐蚀交互作用研究[J].石油机械,2014,42(8):89-93.ZHANG Fuxiang,BA Dan,LIU Hongtao,LI Zhen,DOU Yihua.Study on the erosion and corrosion of super 13Cr tubing in fracturing[J].China Petroleum Machinery,2014,42(8):89-93.
    [8]ZHU S D,WEI J F,CAI R,BAI Z Q,ZHOU G S Corrosion failure analysis of high strength grade super13Cr-110 tubing string[J].Engineering Failure Analysis,2011,18(8):2222-2231.
    [9]张日,刘海笑.流动保障中管道的颗粒侵蚀分析[J].海洋工程,2012,30(4):10-20.ZHANG Ri,LIU Haixiao.Solid particle erosion analysis of pipelines in flow assurance[J].The Ocean Engineering,2012,30(4):10-20.
    [10]OKA Y I,OKAMURA K,YOSHIDA T.Practical estimation of erosion damage caused by solid particle impact:Part 1:Effects of impact parameters on a predictive equation[J].Wear,2005,259(1):95-101.
    [11]OKA Y I,YOSHIDA T,Practical estimation of erosion damage caused by solid particle impact:Part 2:Mechanical properties of materials directly associated with erosion damage[J].Wear,2005,259(1):102-109.
    [12]ZHANG Y,REUTERFORS E P,MCLAURY B S,SHIARAZI S A,RYBICKI E F.Comparison of computed and measured particle velocities and erosion in water and air flows[J].Wear,2007,263:330-338.
    [13]DNV RP-0501,Erosive wear in piping systems[S].1996.
    [14]FINNIE I.Some observations on the erosion of ductile metals[J].Wear,1972,19(1):81-90.
    [15]LEVY A V,CROOK P.The erosion properties of alloys for the chemical processing industries[J].Wear,1991,151(2):337-350.
    [16]LOPEZ D,CONGOTE J P,CANO J R,TORO A,TSCHIPTSCHIN A P.Effect of particle velocity and impact angle on the corrosion-erosion of AISI 304 and AISI 420 stainless steels[J].Wear,2005,259(1):118-124.
    [17]WOOD R J K,JONES T F,GANESHLINGAM J,MILES N J.Comparison of predicted and experimental erosion estimates in slurry ducts[J].Wear,2004,256(9):937-947.
    [18]WILSON K C.Slip point of beds in solid-liquid pipeline flow[J].Journal of the Hydraulics Division,1970,96(1):1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700