用户名: 密码: 验证码:
冰在低温下的单轴压缩力学行为和破坏机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanical Behavior and Failure Mechanism of Ice at Cryogenic Temperatures under Uniaxial Compression
  • 作者:张永康 ; 李玉龙 ; 汤忠斌 ; 金康华 ; 杨洪
  • 英文作者:Yongkang Zhang;Yulong Li;Zhongbin Tang;Kanghua Jin;Hong Yang;School of Mechanical and Electrical Engineering,Suzhou Vocational University;School of Aeronautics,Northwestern Polytechnical University;
  • 关键词: ; 低温 ; 应变率 ; 压缩强度 ; 破坏机制
  • 英文关键词:ice;;cryogenic temperature;;strain rate;;compressive strength;;failure mechanism
  • 中文刊名:GTLX
  • 英文刊名:Chinese Journal of Solid Mechanics
  • 机构:苏州市职业大学机电工程学院;西北工业大学航空学院;
  • 出版日期:2018-07-26 16:41
  • 出版单位:固体力学学报
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(11372206)资助
  • 语种:中文;
  • 页:GTLX201805010
  • 页数:9
  • CN:05
  • ISSN:42-1250/O3
  • 分类号:95-103
摘要
利用带有低温装置的Instron5848材料实验机和分离式Hopkinson压杆装置(SHPB),在-10℃、-20℃和-30℃温度下,对多晶冰进行了应变率为10-4~102 s-1范围内的单轴压缩力学性能实验,分析了实验结果的可靠性和有效性.研究发现:冰的压缩强度具有明显的温度和应变率敏感性,随应变率的增大、温度的降低而提高;压缩强度与应变率对数呈线性关系,应变率的升高会增强降温对压缩强度的强化效应.在研究的应变率和温度范围内,冰主要有径向膨胀、纵向劈裂和整体破碎三种破坏模式,内应力释放速率和氢键强度的变化是导致多晶冰破坏模式改变的主要原因.
        In adverse weather conditions,hailstone impact is a serious threat to the integrity of aircraft structures.The U.S.ASTM-F320-1994 standard has provided a detailed method for simulating the impact of hailstone on aircraft by throwing ice balls.Therefore,the mechanical properties of ice under low temperature,high strain rate and their coupling effect have received widespread attention.In the present study,by using an Instron 5848 material testing machine and a split Hopkinson pressure bar(SHPB)with cooling chambers,a series of uniaxial compression tests were carried out to explore the mechanical behaviors and failure mechanism of polycrystalline ice at the temperatures of-10 ℃,-20 ℃ and-30 ℃,and at the strain rates in the range of 10-4 s-1 to 102 s-1.Based on the waveform shaper technology,the stress equilibrium and an approximately constant strain rate in the ice samples were achieved during the dynamic loading process.Meanwhile,the reliability and effectiveness of the experimental results were examined carefully.The experimental results show as follows.The compressive strength of ice is highly sensitive to both temperature and strain rate.In particular,the compressive strength of ice increases with the increase in strain rate and the decrease in temperature.Moreover,there exists a linear relationship between the compressive strength and the logarithm of strain rate.In addition,we found that the increase of strain rate enhances the strengthening effect of the compressive strength due to the decrease in temperature.Within the studied strain rate and temperature scope,the ice mainly has three types of failure modes,namely expansion,longitudinal splitting and holistic crushing.It has been found through analysis that the change in the failure mode of ice is probably due to two reasons:the inner stress release rate during microcrack nucleation and propagation,and the variation of the hydrogen bond strength.
引文
[1]Souter R K,Emerson J B.Summary of Available Hail Literature and the Effect of Hail on Aircraft in Flight[R].NACA Technical Note 2734,Washington D.C.,1952:1-33.
    [2]American Society for Testing and Materials.Standard Test Method for Hail Impact Resistance of Aerospace Transparent Enclosures:ASTM-F320-1994[S].West Conshohocken,PA:American Society for Testing and Materials,1994.
    [3]中国民用航空总局.关于修订《航空发动机适航标准》的决定[EB],2002.http://www.caac.gov.cn/XXGK/XXGK/MHGZ/201511/t20151102_8523.html.
    [4]Schulson E M.Brittle failure of ice[J].Engineering Fracture Mechanics,2001,68(17):1839-1887.
    [5]Currier J H,Schulson E M.The tensile strength of ice as a function of grainsize[J].Acta Metallurgica,1982,30(8):1511-1514.
    [6]Dempsey J P,Defranco S J,Adamson R M,Mulmule SV.Scale effects on the in-situ tensile strength and fracture of ice-Part I:Large grained freshwater ice at Spray Lakes Reservoir,Alberta[J].International Journal of Fracture,1999,95(1-4):325-345.
    [7]Schulson E M.The structure and mechanical behavior of ice[J].Journal of the Minerals,Metals&Materials Society,1999,51(2):21-27.
    [8]Nixon W A,Schulson E M.A micromechanical view of the fracture toughness of ice[J].Journal de Physique Colloques,1987,48(C1):313-319.
    [9]Weber L J,Nixon W A.Fracture toughness of freshwater ice-Part I:Experimental technique and results[J].Journal of Offshore Mechanics&Arctic Engineering,1996,118(2):135-140.
    [10]Uchida T,Kusumoto S.Effects of test conditions on fracture toughness and fracture morphology of polycrystalline ice[J].JSME International Journal Series a-Solid Mechanics and Material Engineering,1999,42(4),601-609.
    [11]岳前进,任晓辉,陈巨斌.海冰韧脆转变实验与机理研究[J].应用基础与工程科学学报,2005,13(1):35-42.(Yue Q J,Ren X H,Chen J B.The test and mechanism investigation on ductile-brittle transition of sea ice[J].Journal of Basic Science and Engineering,2005,13(1):35-42.(in Chinese))
    [12]Wu X,Prakash V.Dynamic strength of distill water and lake water ice at high strain rates[J].International Journal of Impact Engineering,2015,76:155-165.
    [13]Shazly M,Prakash V,Lerch B A.High strain-rate behavior of ice under uniaxial compression[J].International Journal of Solids&Structures,2009,46(6):1499-1515.
    [14]汪洋,李玉龙,刘传雄.利用SHPB测定高应变率下冰的动态力学行为[J].爆炸与冲击,2011,31(2):215-219.(Wang Y,Li Y L,Liu C X.Dynamic mechanical behaviors of ice at high strain rates[J].Explosion and Shock Waves,2011,31(2):215-219.(in Chinese))
    [15]Dutta P K.Compressive failure of polycrystalline ice under impact:Proceedings of the third international offshore and polar engineering conference,Singapore,June 6-11,1993[C].In:Cupertino,California,International Society of Offshore and Polar Engineers,1993,ISOPE-I-93-183:573-580.
    [16]Dutta P K,Cole D M,Schulson E M,Sodhi D S.Afracture study of ice under high strain rate loading[J].International Journal of Offshore&Polar Engineering,2004,14(3):182-188.
    [17]Kim H,Keune J N.Compressive strength of ice at impact strain rates[J].Journal of Materials Science,2007,42(8):2802-2806.
    [18]Frew D J,Forrestal M J,Chen W.A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials[J].Experimental Mechanics,2001,41(1):40-46.
    [19]Petrovic J J.Review mechanical properties of ice and snow[J].Journal of Materials Science,2003,38(1):1-6.
    [20]陈刚,陶俊林,陈忠富,黄西成,徐伟芳.SHPB的径向惯性效应修正[J].西南科技大学学报,2008,23(2):15-18.(Chen G,Tao J L,Chen Z F,Huang X C,Xu W F.Correction of lateral inertia effect in SHPB[J].Journal of Southwest University of Science and Technology,2008,23(2):15-18.(in Chinese))
    [21]Baker I,Liu F,Jia K,Hu X,Dudley M.Dislocation/grain boundary interactions in ice crystals under creep conditions[J].Materials Science Forum,1996,207-209:581-584.
    [22]Liu F P,Baker I,Dudley M.Dynamic observations of dislocation generation at grain boundaries in ice[J].Philosophical Magazine A,1993,67(5):1261-1276.
    [23]Cannon N P,Schulson E M,Smith T R,Frost H J.Wing cracks and brittle compressive fracture[J].Acta Metallurgica Et Materialia,1990,38(10):1955-1962.
    [24]冯晓伟,冯高鹏,方辉.不同应变率下冰破坏特性的试验研究[J].应用力学学报,2016,33(2):223-228.(Feng X W,Feng G P,Fang H.Experimental investigation on compressive failure behavior of fresh-water ice at different compressive rates[J].Chinese Journal of Applied Mechanics,2016,33(2):223-228.(in Chinese))
    [25]李发兵,李占龙,门志伟,李业秋欧阳顺利.利用拉曼光谱分析冰Ih相的表面薄层的氢键结构[J].光谱学与光谱分析,2017,37(6):1683-1686.(Li F B,Li Z L,Men Z W,Li Y Q,Ouyang S L.Analysis of hydrogen bond structure in ice Ih surface of film with Raman spectra[J].Spectroscopy and Spectral Analysis,2017,37(6):1683-1686.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700