用户名: 密码: 验证码:
苹果花生间作系统土壤水分动态及主要竞争区域
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The dynamic change and the competition area of soil moisture in apple-peanut intercropping system
  • 作者:王丹 ; 毕华兴 ; 许华森 ; 蔡智才 ; 常译方 ; 陈玥
  • 英文作者:WANG Dan;BI Hua-xing;XU Hua-sen;CAI Zhi-cai;CHANG Yi-fang;CHEN Yue;College of Soil and Water Conservation,Beijing Forestry University;Ji county station,Chinese National Ecosystem Research Network (CNERN);The Collaborative Innovation Center for Promoting Ecological Functions of Forestry and economic trees;College of Resource and Environment,China Agricultural University;
  • 关键词:晋西黄土区 ; 苹果-花生间作系统 ; 土壤水分 ; 主要竞争区域
  • 英文关键词:the Loess Plateau of west Shanxi Province;;apple-peanut intercropping system;;soil moisture;;the main competition area
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:北京林业大学水土保持学院;山西吉县森林生态系统国家野外科学观测研究站;北京林果业生态环境功能提升协同创新中心;中国农业大学资源与环境学院;
  • 出版日期:2018-01-10
  • 出版单位:干旱地区农业研究
  • 年:2018
  • 期:v.36;No.166
  • 基金:国家自然科学基金(31470638)
  • 语种:中文;
  • 页:GHDQ201801015
  • 页数:6
  • CN:01
  • ISSN:61-1088/S
  • 分类号:95-100
摘要
以晋西黄土区典型苹果-花生间作系统为研究对象,研究间作系统界面土壤水分动态变化以及土壤水分的主要竞争区域,旨在提高该地区果农间作系统降水生产力、土壤水分利用效率。采用烘干称重法对苹果树行(行距为5 m)距苹果树不同距离处0~60 cm土层的土壤水分含量进行监测,利用移动窗口法对土壤水分的主要竞争区域进行分析。研究表明:花生的苗期、开花期、结荚期和成熟期,土壤水分含量较低,均未超过20%,且各时期土壤水分含量差异显著,苗期和成熟期土壤水分含量高于开花期和结荚期,开花期土壤水分含量最低;以距苹果树南北两侧各2.5 m为分界线,距离果树越远,土壤水分含量先降低再升高,最低点在距树行1.2 m左右;在花生各生育期,与花生单作比较,间作系统土壤水分皆呈现出负效应,分别是-25.16%、-20.26%、~(-1)2.97%和~(-1)1.13%;苹果-花生间作系统苗期的主要竞争区域是距树南侧0.8~2 m和距树北侧0.8~1.8 m,竞争宽度2.2 m;花生开花期的主要竞争区域为距树南侧0.8~1.8 m和距树北侧1~2 m,结荚期和成熟期土壤水分的主要竞争宽度最小,为1.8 m,主要竞争区域分别是距树南侧0.8~1.8 m、距树北侧0.8~1.6 m和距树南侧0.8~1.6 m、距树北侧0.8~1.8 m。
        The objective of this study is to analyze moisture dynamic changes and the main competition area in apple-peanut intercropping system and improve the productivity of rainfall and the efficiency of soil moisture in the intercropping systems on the Loess Plateau of west Shanxi Province. Soil moisture contents between two rows of apple trees( spacing of 5 m) and at different distances from the apple trees were monitored by oven drying method.And the main competition area was investigated with the moving split window technique. Overall,soil moisture content was low and the maximum did not exceed 20% in different phenophases( including seedling stage,flowering stage,bearing pod stage and mature stage) of peanut. In addition,soil moisture content was significantly different among phenophases. The soil moisture content of seedling stage and mature stage was higher than flowering stage and bearing pod stage while the lowest was in flowering stage. Taking 2.5 m from apple trees as the dividing line,soil moisture content decreased at first and then increased with the increase of the distance from trees,and the lowest soil moisture content was detected when the distance is around 1. 2 m from the trees. In four different phenophases of peanut,comparing with peanut monoculture system,soil moisture in apple-peanut intercropping systemshowed negative effect,namely-25.16%-20.26%~(-1)2.97% and~(-1)1.13%. The main competition area of seedling stage was 0.8 ~ 2 m away from the south side of apple trees and 0.8 ~ 1.8 m away from the north side of apple trees,where the competitive width is 2.2 m. The main competition area of flowering stage was 0.8 ~ 1.8 m away from the south side of apple trees and 1 ~ 2 m for the north side. The minimum competitive width of soil moisture was in both bearing pod stage and mature stage which was 1.8 m simultaneously. The main competition area in bearing pod stage was 0.8 ~ 1.8 m away from the south side of apple trees and 0. 8 ~ 1. 6 m away from the north side of apple trees. Meanwhile,in the mature stage,the main competition area is 0.8 ~ 1.6 m away from the south side of apple trees and 0.8 ~ 1.8 m away from the north side of apple trees.
引文
[1]史晓丽,郭小平,毕华兴,等.晋西果农间作光竞争及产量研究[J].北京林业大学学报,2009,31(S2):115-118.
    [2]孙守家,孟平,张劲松,等.华北石质山区核桃-绿豆复合系统氘同位素变化及其水分利用[J].生态学报,2010,30(14):3717-3726.
    [3]Charbonnier F,Maire G L,Erwin Dreyer,et al.Competition for light in heterogeneous canopies:Application of MAESTRA to a coffee(Coffea arabica L.)agroforestry system[J].Agricultural&Forest Meteorology,2013,181(21):152-169.
    [4]廖文超,毕华兴,赵云杰,等.晋西苹果+大豆间作土壤水分分布及其对大豆生长的影响[J].中国水土保持科学,2014,12(1):24-28.
    [5]高路博,毕华兴,许华森,等.晋西苹果-大豆间作土壤水分的时空分布特征[J].水土保持通报,2014,34(6):327-331,337.
    [6]高路博,毕华兴,许华森,等.晋西幼龄苹果×大豆间作的土壤中水分、养分空间分布特征及对大豆的影响[J].中国农学通报,2013,29(24):36-42.
    [7]Mc Intyre B D,Riha S J,Ong C K.Competition for water in a hedgeintercrop system[J].Field Crops Research,1997,52(1):151-160.
    [8]Padovan M P,Cortez V J,Navarrete L F,et al.Root distribution and water use in coffee shaded with Tabebuia rosea Bertol.and Simarouba glauca DC.compared to full sun coffee in sub-optimal environmental conditions[J].Agroforestry Systems,2011,89(5):1-12.
    [9]田阳,周玉喜,云雷,等.晋西黄土区苹果-农作物间作土壤水分研究[J].水土保持研究,2013,20(2):29-32,37.
    [10]云雷,毕华兴,马雯静,等.晋西黄土区果农间作土壤养分空间分布[J].农业工程学报,2010,26(S1):292-299.
    [11]蔡崇法,王峰,丁树文,等.间作及农林复合系统中植物组分间养分竞争机理分析[J].水土保持研究,2000,7(3):219-221,252.
    [12]Peng X,Zhang Y,Cai J,et al.Photosynthesis,growth and yield of soybean and maize in a tree-based agroforestry intercropping system on the Loess Plateau[J].Agroforestry systems,2009,76(3):569-577.
    [13]Lei Yun,Huaxing Bi,Lubo Gao,et al.Soil moisture and soil nutrient content in walnut-crop intercropping systems in the loess plateau of China[J].Arid Land Research&Management,2012,26(4):285-296.
    [14]何春霞,陈平,孟平,等.华北低丘山区果药复合系统种间水分利用策略[J].植物生态学报,2016,40(2):151-164.
    [15]Ludwig J A,Cornelius J M.Locating discontinuities along ecological gradients[J].Ecology,1987,68(2):448-450.
    [16]高路博,毕华兴,许华森,等.晋西黄土区幼龄苹果+花生间作地土壤水分的时空分布特征[J].中国水土保持科学,2013,11(4):93-98.
    [17]Choesin D,Boerner R E J.Vegetation boundary detection:a comparison of two approaches applied to field data[J].Plant Ecology,2002,158(1):85-96.
    [18]Fortin M J.Edge detection algorithms for two-dimensional ecological data[J].Ecology,1994,75(75):956-965.
    [19]牛亚菲,宋涛,刘春凤,等.基于要素叠加的旅游景区经济影响域空间分异——以八达岭长城景区为例[J].地理科学进展,2010,29(2):225-231.
    [20]刘世梁,温敏霞,崔保山,等.道路影响域的界定及其空间分异规律——以纵向岭谷区为例[J].地理科学进展,2008,27(4):122-128.
    [21]殷少美,金晓斌,周寅康,等.基于主成分分析法和AHP-GEM模型的区域新增建设用地指标合理配置——以江苏省为例[J].自然资源学报,2007,22(3):372-379.
    [22]石培礼,李文华.生态交错带的定量判定[J].生态学报,2002,(4):586-592.
    [23]云雷,毕华兴,马雯静,等.晋西黄土区林草复合系统土壤养分分布特征及边界效应[J].北京林业大学学报,2011,33(2):37-42.
    [24]李丽光,何兴元,李秀珍,等.岷江上游花椒地/林地边界土壤水分影响域的定量判定[J].应用生态学报,2006,17(11):2011-2015.
    [25]王晓,张克斌,杨晓晖,等.半干旱区湿地-干草原交错带边界判定及其变化[J].生态学报,2012,32(16):5121-5127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700