用户名: 密码: 验证码:
同步辐射技术在环境纳米金属组学研究中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of Studies on the Environmental Nanometallomics Using Synchrotron Radiation Techniques
  • 作者:史雪倩 ; 李红 ; 白旭 ; 张晨曦 ; 李玉锋 ; 赵甲亭 ; 高愈希
  • 英文作者:Shi Xueqian;Li Hong;Bai Xu;Zhang Chenxi;Li Yufeng;Zhao Jiating;Gao Yuxi;Tianjin University of Science and Technology;Institute of High Energy Physics (IHEP),Chinese Academy of Sciences (CAS);University of Chinese Academy of Sciences (UCAS);
  • 关键词:同步辐射技术 ; 环境毒理与健康 ; 纳米金属组学
  • 英文关键词:synchrotron radiation techniques;;environmental toxicity and health;;nanometallomics
  • 中文刊名:STDL
  • 英文刊名:Asian Journal of Ecotoxicology
  • 机构:天津科技大学;中国科学院高能物理研究所中国科学院纳米生物效应与安全性重点实验室;中国科学院大学;
  • 出版日期:2019-04-15
  • 出版单位:生态毒理学报
  • 年:2019
  • 期:v.14
  • 基金:国家自然科学基金(No.21777162,U1432241)
  • 语种:中文;
  • 页:STDL201902001
  • 页数:11
  • CN:02
  • ISSN:11-5470/X
  • 分类号:4-14
摘要
随着我国工业的发展,在工业产值不断提升的同时,向环境中释放出的各类污染物也逐渐增加,其中包括多种金属纳米颗粒物。这些金属纳米颗粒物进入大气、水源及土壤中,累积到一定程度引起环境安全问题;进一步可被动植物所吸收,经过食物链富集和传递,造成直接或间接人体暴露,危害人体健康。环境纳米金属组学,研究的范畴主要涉及自然或人为因素产生的金属纳米颗粒在环境介质和生物有机体中的生物/化学行为、转化归趋,并且据此评价金属纳米颗粒物的环境安全性及其生物健康效应。随着对金属纳米颗粒环境效应研究的不断深入,对传统的研究方法提出了更多的挑战。同步辐射具有高亮度、高准直和宽频谱等特性,在金属元素分析方面具有无可比拟的优势。本文主要介绍了同步辐射技术,如同步辐射X射线荧光分析技术(SR-XRF)和同步辐射X射线吸收光谱技术(SR-XAS)等,在金属纳米颗粒物的环境行为及其生物健康效应研究中的应用;结合本实验室及国内外的一些研究工作,阐述了同步辐射技术应用于环境纳米金属组学研究领域所取得的一些新进展,以期为拓展同步辐射技术在环境金属纳米颗粒物分析的应用研究提供参考价值。
        With the development of Chinas industry, the industrial output keeps rising, accompanied by various kinds of pollutants being released into the environment, including a variety of metal nanoparticles. Subsequently,these metal nanoparticles entered the atmosphere, water source and soil and accumulated to a certain extent, causing environmental safety problems. These metal nanoparticles can be further absorbed by organisms, and then transmitand accumulate through the food chain. Therefore, human beings may be directly or indirectly exposed to high levels of various metal nanoparticles, which poses health risks. Environment-nano-metallomics mainly focus on the studies of the bio-chemical behaviors as well as the transformation and translocation of the natural and artificial metal-nanoparticles released to the environmental medium, and on the assessment of environmental safety and bio-health effect associated with metal nano-particles. The deeper for the studies, the higher request for the analytical methods.Synchronous radiation(SR) has specific advantages for metal nano-particles analysis because of its characteristics of high brightness, high collimation and wide spectrum. This article mainly introduced the application of SR techniques,such as synchrotron radiation X-ray fluorescence analysis(SR-XRF) and synchrotron radiation X-ray absorption spectroscopy(SR-XAS), in the field of environment-nano-metallomics. We also summarized the research processes of the environment-nano-metallomics of studies from our lab and others. We expect to, through the present work, provide valuable information for expanding the application of SR on the studies of environment-nano-metallomics.
引文
[1]孟萍.土壤环境中西兰花对金属纳米颗粒物敏感性研究[D].哈尔滨:哈尔滨工业大学, 2015:2-10Meng P. Broccoli susceptibility to metal nanoparticles in soil environment[D]. Harbin:Harbin Institute of Technology, 2015:2-10(in Chinese)
    [2] Castillo-Michel H A, Larue C, Pradas Del Real A E, et al.Practical review on the use of synchrotron based microand nano-X-ray fluorescence mapping and X-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials[J]. Plant Physiology&Biochemistry, 2016, 110:13-32
    [3]王洁婷,张芳,丁文军.纳米金属氧化物的神经毒性效应研究进展[J].神经药理学报, 2013, 3(30):39-47Wang J T, Zhang F, Ding W J. Neurotoxic effects of metal oxide nanoparticles[J]. Acta Neuropharmacologica, 2013,3(30):39-47(in Chinese)
    [4]李佳昕,张娴,张爱清,等.碳纳米材料的水环境行为及对水生生物毒理学研究进展[J].生态毒理学报,2017, 12(5):12-25Li J X, Zhang X, Zhang A Q, et al. A review of aquatic environmental behavior of carbon nanomaterials and its toxicological effects on aquatic organisms[J]. Asian Journal of Ecotoxicology, 2017, 12(5):12-25(in Chinese)
    [5]李阳,牛军峰,张驰,等.水中金属纳米颗粒对细菌的光致毒性机理[J].化学进展, 2014, 26(Z1):436-449Li Y, Niu J F, Zhang C, et al. Photoinducedtoxic mechanism of metallic nanoparticles toward bacteria in water[J]. Progress in Chemistry, 2014, 26(Z1):436-449(in Chinese)
    [6]陈安伟,曾光明,陈桂秋,等.金属纳米材料的生物毒性效应研究进展[J].环境化学, 2014, 33(4):568-575Chen A W, Zeng G M, Chen G Q, et al. Advance in research on toxicity of metal nanomaterials[J]. Environmental Chemistry, 2014, 33(4):568-575(in Chinese)
    [7]王超,贺跃辉,彭超群,等.一维金属纳米材料的研究进展[J].中国有色金属学报, 2012, 22(1):128-138Wang C, He Y H, Peng C Q, et al. Research progress of one-dimensional metal nanomaterials[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(1):128-138(in Chinese)
    [8]蒋国翔,沈珍瑶,牛军峰,等.环境中典型人工纳米颗粒物毒性效应[J].化学进展, 2011, 23(8):1769-1781Jiang G X, Shen Z Y, Niu J F, et al. Nanotoxicity of engineered nanomaterials in the environment[J]. Progress in Chemistry, 2011, 23(8):1769-1781(in Chinese)
    [9]张保林,弋楠,朱蓉英,等.透射电镜与扫描电镜分析[J].无线互联科技, 2016(23):25-26Zhang B L, Yi N, Zhu R Y, et al. Analysis of transmission electron microscope and scanning electron microscope[J].Wireless Internet Technology, 2016(23):25-26(in Chinese)
    [10] Chen Y, Si Y, Zhou D, et al. Differential bioaccumulation patterns of nanosized and dissolved silver in a land snail Achatina fulica[J]. Environmental Pollution, 2017, 222:50-57
    [11] Li C C, Dang F, Li M, et al. Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice[J]. Nanotoxicology, 2017, 11(5):699-709
    [12] Rui M, Ma C, Tang X, et al. Phytotoxicity of silver nanoparticles to peanut(Arachis hypogaea L.):Physiological responses and food safety[J]. ACS Sustainable Chemistry&Engineering, 2017, 5(8):6557-6567
    [13] Yang J, Jiang F, Ma C, et al. Alteration of crop yield and quality of wheat upon exposure to silver nanoparticles in a life cycle study[J]. Journal of Agricultural&Food Chemistry, 2018, 66(11):2589-2597
    [14]姜童祥,胥艳.电感耦合等离子体质谱法(ICP-MS)同时测定紫菜中砷、镉含量的不确定度评定[J].河南预防医学杂志, 2017, 28(6):423-427Jiang T X, Xu Y. Evaluation of uncertainty for determination of arsenic and cadmium in laver by ICP-MS[J].Henan Journal of Preventive Medicine, 2017, 28(6):423-427(in Chinese)
    [15]刘小芳,薛长湖,王玉明,等.两种海胆矿质元素的ICP-MS法测定分析[J].食品工业科技, 2012, 33(3):313-316Liu X F, Xue C H, Wang Y M, et al. Determination of mineral elements in two kinds of sea urchin by ICP-MS method[J]. Science and Technology of Food Industry,2012, 33(3):313-316(in Chinese)
    [16]麦振洪.同步辐射光的发展历史与现状——介绍新书《同步辐射光源及其应用》[J].现代物理知识, 2014, 26(2):65-71
    [17]曲颖,李玉锋,陈春英.同步辐射及相关核分析技术在纳米材料生物效应研究中的应用[J].化学进展, 2011,23(7):1534-1546Qu Y, Li Y F, Chen C Y. Synchrotronradiation and related nuclear analytical techniques for the study on biological effects of nanomaterials[J]. Progress in Chemistry, 2011,23(7):1534-1546(in Chinese)
    [18]郭小云,辛洪兵,石才土.同步辐射技术及其应用[J].北京工商大学学报:自然科学版, 2005(5):28-31Guo X Y, Xin H B, Shi C T. Synchrotron radiation technology and its application[J]. Journal of Beijing Technology and Business University:Natural Science Edition,2005(5):28-31(in Chinese)
    [19] Mancuso A P, Yefanov O M, Vartanyants I A. Coherent diffractive imaging of biological samples at synchrotron and free electron laser facilities[J]. Journal of Biotechnology, 2010, 149(4):229-237
    [20] Gao Y, Liu N, Chen C, et al. Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence[J].Journal of Analytical Atomic Spectrometry, 2008, 23(8):1121-1124
    [21]李玉锋,赵甲亭,李云云,等.同步辐射技术研究汞的环境健康效应与生态毒理[J].中国科学:化学, 2015,45(6):597-613Li Y F, Zhao J T, Li Y Y, et al. Studies on the environmental health effects and ecotoxicology of mercury by synchrotron radiation-based techniques[J]. Scientia Sinica Chimica, 2015, 45(6):597-613(in Chinese)
    [22]曹玲玲.基于同步辐射技术研究城市生活垃圾焚烧中元素的迁移转化及其对环境的影响[D].北京:中国科学院大学, 2015:2-25Cao L L. Study on the partitioning and speciation of elements from municipal solid waste incineration and their environmental effects by synchrotron techniques[D]. Beijing:University of Chinese Academy of Sciences, 2015:2-25(in Chinese)
    [23] Bewer B. Quantification estimate methods for synchrotron radiation X-ray fluorescence spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2015, 347:1-6
    [24] Susumu I, Tsukasa N, Akira T, et al. Three-dimensional study by synchrotron radiation computed tomography of melt distribution in samples doped to enhance contrast[J].Mineralogical Magazine, 2017, 81(5):1203-1222
    [25]张元勋,李晓林,包良满,等.基于同步辐射技术研究上海大气细颗粒物分布特征[J].核技术, 2009, 32(6):419-422Zhang Y X, Li X L, Bao L M, et al. Characteristics of airborne fine particulate distribution in Shanghai based on synchrotron radiation techniques[J]. Nuclear Techniques,2009, 32(6):419-422(in Chinese)
    [26]李晓林,刘江峰,包良满,等.单个大气超细颗粒物源特征的同步辐射光源X射线探针初步研究[J].科学通报, 2010, 55(12):1107-1112Li X L, Liu J F, Bao L M, et al. Preliminary study of the individual ultrafine aerosol particles using a synchrotron X-ray fluorescence microprobe[J]. Chinese Science Bulletin(Chinese Version), 2010, 55(12):1107-1112(in Chinese)
    [27] Gao X, Spielmansun E, Rodrigues S M, et al. Time and nanoparticle concentration affect the extractability of Cu from Cu O NP amended soil[J]. Environmental Science&Technology, 2017, 51(4):2226-2234
    [28] Pradas Del Real A E, Castillo-Michel H A, Kaegi R, et al.Fate of Ag-NPs in sewage sludge after application on agricultural soils[J]. Environmental Science&Technology,2016, 50(4):1759-1768
    [29] Peng W, Menzies N W, Dennis P G, et al. Silver nanoparticles entering soils via the wastewater-sludge-soil pathway pose low risk to plants but elevated Cl concentrations increase Ag bioavailability[J]. Environmental Science&Technology, 2016, 50(15):8274-8281
    [30] Li Y, Li H, Li Y F, et al. Evidence for molecular antagonistic mechanism between mercury and selenium in rice(Oryza sativa L.):A combined study using 1,2-dimensional electrophoresis and SR-XRF techniques[J]. Journal of Trace Elements in Medicine and Biology, 2017, 50:435-440
    [31] Wang Y J, Dang F, Zhao J T, et al. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil[J]. Environmental Pollution, 2016, 213(213):232-239
    [32] Manceau A, Nagy K L, Marcus M A, et al. Formation of metallic copper nanoparticles at the soil-root interface[J].Environmental Science&Technology, 2008, 42(5):1766-1772
    [33] Alkattan A, Wichser A, Zuin S, et al. Behavior of Ti O2released from nano-Ti O2-containing paint and comparison to pristine nano-Ti O2[J]. Environmental Science&Technology, 2014, 48(12):6710-6718
    [34]胡国成,张丽娟,齐剑英,等.贵州万山汞矿周边土壤重金属污染特征及风险评价[J].生态环境学报, 2015(5):879-885Hu G C, Zhang L J, Qi J Y, et al. Contaminant characteristics and risk assessment of heavy metals in soils from Wanshan mercury mine area, Guizhou Province[J]. Ecology and Environmental Sciences, 2015(5):879-885(in Chinese)
    [35]何谈,廖柏寒,曾敏,等.湘南4个矿区稻田As污染状况的初步调查[J].生态毒理学报, 2007, 2(4):470-475He T, Liao B H, Zeng M, et al. Preliminary investigation of As pollution in four mining areas in southern Hunan[J]. Asian Journal of Ecotoxicology, 2007, 2(4):470-475(in Chinese)
    [36] Servin A D, Castillo-Michel H, Hernandez-Viezcas J A, et al. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of Ti O2nanoparticlesin cucumber(Cucumis sativus)plants[J]. Environmental Science&Technology, 2012, 46(14):7637-7643
    [37] Larue C, Laurette J, Herlin-Boime N, et al. Accumulation,translocation and impact of Ti O2, nanoparticles in wheat(Triticum aestivum, spp.):Influence of diameter and crystal phase[J]. Science of the Total Environment, 2012, 431(3):197-208
    [38] Ma Y, Zhang P, Zhang Z, et al. Where does the transformation of precipitated ceria nanoparticles in hydroponic plants take place?[J]. Environmental Science&Technology, 2015, 49(17):10667-10674
    [39] Cheng P, Chen X, Liu Q, et al. Fate and transformation of Cu O nanoparticles in the soil-rice system during the lifecycle of rice plants[J]. Environmental Science&Technology, 2017, 51(9):4907-4917
    [40] Castillomichel H, Hernandez-Viezcas J, Dokken K M, et al. Localization and speciation of arsenic in soil and desert plant parkinsonia florida usingμXRF andμXANES[J].Environmental Science&Technology, 2011, 45(18):7848-7854
    [41] Hernandez-Viezcas J A, Castillomichel H, Andrews J C, et al. In situ synchrotron X-ray fluorescence mapping and speciation of Ce O and Zn O nanoparticles in soil cultivated soybean(Glycine max)[J]. ACS Nano, 2013, 7(2):1415-1423
    [42] Zhao L, Sun Y, Hernandez-Viezcas J A, et al. Monitoring the environmental effects of Ce O2and Zn O nanoparticles through the life cycle of corn(Zea mays)plants and in situμ-XRF mapping of nutrients in kernels[J]. Environmental Science&Technology, 2015, 49(5):2921-2928
    [43]赵甲亭.硒对植物体内汞的生物学行为及效应的影响[D].北京:中国科学院大学, 2013:30-40Zhao J T. Effects of selenium on the biological behaviors of mercury in plants[D]. Beijing:University of Chinese Academy of Sciences, 2013:30-40(in Chinese)
    [44] Spielmansun E, Lombi E, Donner E, et al. Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat(Triticum aestivum)[J]. Environmental Science&Technology, 2017, 51(13):7361-7368
    [45]刘军,刘春生,纪洋,等.土壤动物修复技术作用的机理及展望[J].山东农业大学学报:自然科学版, 2009,40(2):313-316Liu J, Liu C S, Ji Y, et al. Mechanism and prospect of soil fauna remediation technology[J]. Journal of Shangdong Agricultural University:Nature Sciene, 2009, 40(2):313-316(in Chinese)
    [46]张晓伟,李剑超,卢堂俊,等.蚯蚓强化土地处理农村污水的试验研究[J].农业环境科学学报, 2009, 28(6):1225-1229Zhang X W, Li J C, Lu T J, et al. Experiment in improving land treatment of village sewage by earthworm[J].Journal of Agro-Environment Science, 2009, 28(6):1225-1229(in Chinese)
    [47]邢美燕.蚯蚓生物滤池处理城市合流污水工艺性能研究[D].上海:同济大学, 2008:30-40Xing M Y. Study on the performance of vermi-biofilter for municipal wastewater[D]. Shanghai:Tongji University, 2008:30-40(in Chinese)
    [48] Unrine J M, Hunyadi S E, Tsyusko O V, et al. Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms(Eisenia fetida)[J]. Environmental Science&Technology, 2010, 44(21):8308-8313
    [49] Starnes D L, Unrine J M, Starnes C P, et al. Impact of sulfidation on the bioavailability and toxicity of silver nanoparticles to Caenorhabditis elegans[J]. Environmental Pollution, 2015, 196:239-246
    [50] Servin A D, Castillomichel H A, Hernandez-Viezcas J A,et al. Bioaccumulation of Ce O2nanoparticles by earthworms in biochar amended soil:A synchrotron microspectroscopy study[J]. Journal of Agricultural&Food Chemistry, 2018, 66(26):6609-6618
    [51] Cagno S, Brede D A, Nuyts G, et al. Combined computed nanotomography and nanoscopic X-ray fluorescence imaging of cobalt nanoparticles in Caenorhabditis elegans[J].Analytical Chemistry, 2017, 89(21):11435-11442
    [52] Fuchida S, Yokoyama A, Fukuchi R, et al. Leaching of metals and metalloids from hydrothermal ore particulates and their effects on marine phytoplankton[J]. ACS Omega, 2017, 2(7):3175-3182
    [53] Wang H, Ho K T, Scheckel K G, et al. Toxicity, bioaccumulation, and biotransformation of silver nanoparticles in marine organisms[J]. Environmental Science&Technology, 2014, 48(23):13711-13717
    [54]印万芬.我国主要浮萍科植物的综合开发利用[J].资源节约和综合利用, 1998(2):46-48Yin W F. Comprehensive development and utilization of main duckweed plants in China[J]. Resource Conservation and Comprehensive Utilization, 1998(2):46-48(in Chinese)
    [55] Stegemeier J P, Colman B P, Schwab F, et al. Uptake and distribution of silver in the aquatic plant Landoltia punctata(Duckweed)exposed to silver and silver sulfide nanoparticles[J]. Environmental Science&Technology, 2017,51(9):4936-4943
    [56] Wang Y J, Dang F, Douglas Evans R, et al. Mechanistic understanding of Me Hg-Se antagonism in soil-rice systems:The key role of antagonism in soil[J]. Scientific Reports, 2016, 6:19477, DOI:10.1038/srep19477
    [57] Wang Y J, Dang F, Zhao J T, et al. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil[J]. Environmental Pollution, 2016, 213:232-239

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700