用户名: 密码: 验证码:
第一性原理研究[112]硅锗异质结纳米线的电子结构与光学性质
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:First-principles study on the electronic structure and optical properties of [112] Si/Ge heterostructure nanowires
  • 作者:赵佳佳 ; 顾芳 ; 李敏 ; 张加宏
  • 英文作者:ZHAO Jia-Jia;GU Fang;LI Min;ZHANG Jia-Hong;School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology;Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology,Nanjing University of Information Science and Technology;
  • 关键词:硅锗异质结构 ; 纳米线 ; 硅锗组分 ; 应变 ; 电子结构 ; 光学性质
  • 英文关键词:Si/Ge heterostructure;;Nanowires;;Si/Ge ratio;;Strain;;Electronic structure;;Optical properties
  • 中文刊名:YZYF
  • 英文刊名:Journal of Atomic and Molecular Physics
  • 机构:南京信息工程大学物理与光电工程学院;南京信息工程大学江苏省大气环境与装备技术协同创新中心;
  • 出版日期:2018-12-10 09:47
  • 出版单位:原子与分子物理学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(61307113,61306138);; 江苏高校品牌专业建设工程资助项目(TAPP)
  • 语种:中文;
  • 页:YZYF201902027
  • 页数:7
  • CN:02
  • ISSN:51-1199/O4
  • 分类号:169-175
摘要
基于密度泛函理论体系下的广义梯度近似,本文利用第一性原理方法着重研究了[112]晶向硅锗异质结纳米线的电子结构与光学性质.能带结构计算表明:随着锗原子数的增加,[112]晶向硅锗纳米线的带隙逐渐减小;对Si_(36)Ge_(24)H_(32)纳米线施加单轴应变,其能量带隙随拉应变的增加而单调减小.光学性质计算则表明:随着锗原子数的增加,[112]硅锗纳米线介电函数的峰位和吸收谱的吸收边均向低能量区移动;而随着拉应变的增大,吸收系数峰值呈现出逐渐减小的趋势,且峰位不断向低能量区移动,上述结果说明锗原子数的增加与施加拉应变均导致[112]硅锗纳米线的吸收谱产生红移.本文的研究为硅锗异质结纳米线光电器件研究与设计提供一定的理论参考.
        Based on the generalized gradient approximation of density functional theory(DFT), the electronic structures and optical properties of [112] Si/Ge heterojunction nanowires are investigated by using first-principles calculations. Band structure calculations show that the bandgap of [112] Si/Ge nanowire decreases with the increase of the number of germanium atoms. When uniaxial strain is applied to Si_(36)Ge_(24)H_(32) nanowire, the energy bandgap monotonically decreases with the increase of tensile strain. The calculated optical properties display that both the peak of dielectric constant and the absorption edge of absorption spectrum of [112] Si/Ge nanowire move to the low energy region with the increase of the number of germanium atoms. Meanwhlie, the peak value of absorption coefficient shows a decreasing trend with the increase of tensile strain, and the peak position continuously moves to the low energy region. The above results indicate that both the increase of germanium atom number and the applied tensile strain cause the red shift of the absorption spectrum of [112] Si/Ge nanowire. Our study provides some theoretical references for the research and design of Si/Ge nanowire-based optoelectronic devices.
引文
[1] Lee S T,Wang N,Tang Y H,et al.Transmission electron microscopy evidence of the defect structure in Si nanowires synthe sized by laser ablation [J].Chem.Phys.Lett.,1998,283:368.
    [2] Chen Y T,Wang J L,Chen Z S,et al.Preparation and optical properties of silicon nanowires [J].J.Synth.Cryst.,2016,45:1998 (in Chinese) [陈亚婷,王金良,陈泽升,等.硅纳米线的制备及其光学性能的研究 [J].人工晶体学报,2016,45:1998]
    [3] Kumar D,Srivastava S K,Singh P K,et al.Fabrication of silicon nanowire arrays based solar cell with improved performance [J].Sol.Ener.Mat.Sol.C,2011,95:215.
    [4] Amria C,Ouertanib R,Hamdi A,et al.Enhancement of electrical parameters in solar grade monocrystalline silicon by external gettering through sacrificial silicon nanowire layer [J].Mater.Res.Bull.,2018,98:41.
    [5] Fernández-Regúlez M,Plaza J A,Lora-Tamayo E,et al.Lithography guided horizontal growth of silicon nanowires for the fabrication of ultrasensitive piezoresistive strain gauges [J].Microelectron.Eng.,2010,87:1270.
    [6] Zhang J H,Zhao Y,Ge Y X,et al.Design optimization and fabrication of high-sensitivity SOI pressure sensors with high signal-to-noise ratios based on silicon nanowire piezoresistors [J].Micromachines,2016,7:187.
    [7] Zhang W Y,Hu M,Liu X,et al.Synthesis and gas-sensing properties of the silicon nanowires/vanadium oxide nanorods composite [J].Acta Phys.Sin.,2016,65:090701 (in Chinese) [张玮祎,胡明,刘星,等.硅纳米线/氧化钒纳米棒复合材料的制备与气敏性能研究 [J].物理学报,2016,65:090701]
    [8] Miranda A,de Santiago F,Pérez L A,et al.Silicon nanowires as potential gas sensors:A density functional study [J].Sensor.Actuat.B:Chem.,2017,242:1246.
    [9] Lauhon L J,Gudiksen M S,Wang D,et al.Epitaxial core-shell and core-multishell nanowire heterostructures [J].Nature,2002,420:57.
    [10] Jung J,Lee M L,Yu S F,et al.Implementation of both high-hole and electron mobility in strained Si/strained Si1-yGey on relaxed Si1-xGex (x    [11] Ishai M B,Patolsky F.A route to high-quality crystalline coaxial core/multishell Ge@Si(GeSi)n and Si@(GeSi)n Nanowire Heterostructures [J].Adv.Mater.,2010,22:902.
    [12] Bruno M,Palummo M,Ossicini S,et al.First-principles optical properties of silicon and germanium nanowires [J].Surf.Sci.,2007,601:2707.
    [13] Zhang X.Structure and electronic properties of Si/Ge heterojunction nanowires [D].China:University of Electronic Science and Technology of China,2011 (in Chinese)[张曦.硅锗异质结纳米线的结构和电子特性研究 [D].中国:电子科技大学硕士学位论文,2011]
    [14] Peng X H,Logan P.Electronic properties of strained Si/Ge core-shell nanowires [J].Appl.Phys.Lett.,2010,96:143119.
    [15] Liu N,Lu N,Yao Y X,et al.Strain effects in Ge/Si and Si/Ge core/shell nanowires [J].J.Phys.Chem.C,2011,115:15739.
    [16] Gu F,Zhang J H,Chen Y Y,et al.First-principles study of the strain effect of electronic structures,optical properties and piezoresistivity of the [111] silicon nanowire [J].J.At.Mol.Phys.(原子与分子物理学报),2016,33:53 (in Chinese)
    [17] Segall M D,Lindan P L D,Probert M J,et al.First-principles simulation:ideas,illustrations and the CASTEP code [J].J.Phys.:Condens.Matter,2002,14:2717.
    [18] Luo Z F,Fan M H,Huang J B,et al.A comparative First-principles study of electronic structure and optical properties of monoclinic BiScO3 and BiCrO3 [J].J.At.Mol.Phys.,2017,34:722 (in Chinese) [骆最芬,范梦慧,黄金保,等.单斜BiScO3和BiCrO3的电子结构和光学性质的第一性原理比较研究 [J].原子与分子物理学报,2017,34:722]
    [19] Li D X,Li R Q,Qin X M,et al.First-principles calculations for the magnetisms and optical properties of C-doped rutile TiO2 [J].J.At.Mol.Phys.,2017,34:1155 (in Chinese) [李东翔,李瑞琴,覃信茂,等.第一性原理计算C掺杂金红石型TiO2的磁性和光学性质 [J].原子与分子物理学报,2017,34:1155]
    [20] Xiao L H,Su Y C,Ran J Y,et al.First-principles study of electronic and optical performances of PrB6 [J].J.At.Mol.Phys.,2017,34:1149 (in Chinese) [肖立华,苏玉长,冉景榆,等.PrB6电子结构及光学性能的第一性原理计研究 [J].原子与分子物理学报,2017,34:1149]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700