用户名: 密码: 验证码:
重庆金佛洞石笋δ~(13)C记录的全新世千年尺度气候振荡
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Millennial Time Scale Climate Oscillation in the Holocene Revealed by δ~(13)C of Stalagmite from the Jinfo Cave, Chongqing
  • 作者:王宝艳 ; 杨勋林 ; 孙喜利 ; 史志超 ; 刘睿恺
  • 英文作者:WANG Baoyan;YANG Xunlin;SUN Xili;SHI Zhichao;LIU Ruikai;Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University;Field Scientific Observation & Research Base of Karst Eco-environments at Nanchuan in Chongqing, Ministry of Land and Resources of China;
  • 关键词:全新世 ; 石笋δ~(13)C ; 千年尺度 ; 气候震荡 ; 金佛山
  • 英文关键词:Holocene;;stalagmite δ~(13)C;;millennial time scale;;climate oscillations;;Jinfo Mountain
  • 中文刊名:DZDQ
  • 英文刊名:Earth and Environment
  • 机构:西南大学地理科学学院岩溶环境重庆市重点实验室;国土资源部岩溶生态环境-重庆南川野外基地;
  • 出版日期:2019-01-14 13:55
  • 出版单位:地球与环境
  • 年:2019
  • 期:v.47;No.327
  • 基金:国家自然科学基金项目(41572158、41072141、41272192);; 国家重点研发计划(2016YFC0502301);; 中央高校基本科研业务费项目重大项目(XDJK2012A003)
  • 语种:中文;
  • 页:DZDQ201901001
  • 页数:9
  • CN:01
  • ISSN:52-1139/P
  • 分类号:4-12
摘要
基于重庆市金佛洞石笋J119铀系测年数据和碳同位素数据重建了全新世9.6~1.6 ka B.P.时段的古气候演化序列。分析结果显示:在早全新世的9.6~7.4 ka B.P.期间,J119δ~(13)C记录呈现出偏负趋势,表明此时段内季风逐渐加强,气候开始变暖湿;中全新世的7.4~4.2 ka B.P.期间,J119δ~(13)C值整体偏负,与全新世大暖期相对应;在4.2 ka B.P.附近δ~(13)C记录出现较大幅度的迅速偏正,并持续到约2.5 ka B.P.,随后石笋δ~(13)C值出现偏负趋势,表明在4.2 ka B.P.以后气候持续处于干冷状态直到2.5 ka B.P.才有所转暖。在全新世期间,重庆金佛洞石笋清晰地记录了7次千年尺度气候震荡事件,分别发生在大约2.7 ka B.P.、4.2 ka B.P.、5.5 ka B.P.、8.3 ka B.P.、9.4 ka B.P.附近,与大西洋染赤铁矿记录的冷事件2、3、4、5、6相对应。除此之外,J119δ~(13)C记录显示在7.0~6.7 ka B.P.、7.8~7.3 ka B.P.时段也存在千年尺度震荡,这些突变事件与董哥洞石笋氧同位素记录的弱季风事件(2.7 ka B.P.、4.4 ka B.P.、5.5 ka B.P.、6.3 ka B.P.、7.2 ka B.P.、8.3 ka B.P.)也存在一定的对应关系。因此,本文研究表明金佛山石笋δ~(13)C记录能够反映全新世千年尺度的气候事件,并可以与石笋δ~(18)O记录进行相互对比和验证。
        We reconstructed the paleoclimate evolutionary sequence in the Asian Summer Monsoon area from 9.6 to 1.6 ka B.P. on the basis of δ~(13)C data collected from a continuous growing stalagmite(J119) collected in the Jinfo Cave, Chongqing, China. In the period of from 9.6 to 7.4 ka B.P., the δ~(13)C of J119 showed a negative trend, indicating the East Asian monsoon strengthened gradually and the climate became warm and wet. In the period of from 7.4 to 4.2 ka B.P., the δ~(13)C of J119 turned to be very negative, corresponding to the Holocene Thermal Optimum. In the period of 4.2 to 2.5 ka B.P., the δ~(13)C of J119 showed a continuous positive trend, revealing that the climate became dry and cold. After 2.5 ka B.P., the δ~(13)C of stalagmites turned to be negative slightly, indicating the climate became warmer. The Jinfo mountain experienced 7 times of millennial climate oscillation, occurred at 2.7, 4.2, 5.5, 8.3 and 9.4 ka B.P., respectively, in the Holocene, which corresponded to Bond 2-6 events(the north Atlantic hematite record). In addition, the δ~(13)C of J119 recorded significant other two climate oscillations of 7.0-6.7 ka B.P.. and 7.8-7.3 ka B.P. Combined with other published stalagmite records in the Asian Summer Monsoon region, the weak monsoon events recorded by δ~(13)C of J119 consisted well with those recorded by oxygen isotopes. Therefore, this study further showed that δ~(13)C of Jinfo Mountain stalagmite could record millennial scale climate events in the Holocene and could be verified by the stalagmites δ~(18)O records.
引文
[1] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341): 1257-1266.
    [2] Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene[J]. Science, 2001, 294(5549): 2130-2136.
    [3] Wang S, Ge Q, Wang F, et al. Abrupt climate changes of Holocene [J]. Chinese Geographical Science, 2013, 23(1): 1-12.
    [4] Bond G C, Showers W, Elliot M, et al. The North Atlantic's 1-2 kyr climate rhythm: Relation to heinrich events, Dansgaard/Oeschger cycles and the little ice age[M]. Mechanisms of Global Climate Change at Millennial Time Scales, American Geophysical Union, 1999: 35-58.
    [5] 王绍武. 全新世北大西洋冷事件:年代学和气候影响[J]. 第四纪研究, 2009, 29(6): 1146-1153.
    [6] Bianchi G G, Mccave I N. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland[J]. Nature, 1999, 397(6719): 515-517.
    [7] Cheng H, Fleitmann D, Edwards R L, et al. Timing and structure of the 8.2 ky B.P. event inferred from δ18O records of stalagmites from China, Oman, and Brazil[J]. Geology, 2009, 37(37): 1007-1010.
    [8] Thomas E R, Wolff E W, Mulvaney R, et al. The 8.2 ka event from Greenland ice cores[J]. Quaternary Science Reviews, 2007, 26(1-2): 70-81.
    [9] Gasse F. Hydrological changes in the African tropics since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2000, 19(1-5): 189-211.
    [10] Cullen H M, Demenocal P B, Hemming S, et al. Climate change and the collapse of the Akkadian empire: Evidence from the deep sea[J]. Geology, 2000, 28(4): 379-382.
    [11] Morrill C, Overpeck J T, Cole J E. A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation[J]. The Holocene, 2003, 13(4): 465-476.
    [12] 谭亮成, 安芷生, 蔡演军,等. 4.2 ka BP气候事件在中国的降雨表现及其全球联系[J].地质论评, 2008, 54(1):94-104.
    [13] Staubwasser M, Sirocko F, Grootes P M, et al. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability[J]. Geophysical Research Letters, 2003, 30(8): 1-4.
    [14] 李东, 谭亮成, 安芷生. 我国季风区5 ka BP气候事件[J]. 地球环境学报, 2016, 7(5): 468-479.
    [15] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640.
    [16] Wang Y, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857.
    [17] Genty D, Blamart D, Ouahdi R, et al. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data[J]. Nature, 2003, 421(6925): 833.
    [18] Wu J Y, Wang Y J, Cheng H, et al. Stable isotope and trace element investigation of two contemporaneous annually-laminated stalagmites from northeastern China surrounding the "8.2 ka event"[J]. Climate of the Past Discussions, 2012, 8(3): 1497-1507.
    [19] 史志超, 杨勋林, 刘秀明,等. 重庆地区石笋δ13C记录的全新世气候环境变化[J]. 地球与环境, 2018, 46(2): 138-145.
    [20] 张任, 朱学稳, 韩道山,等, 重庆市南川金佛山岩溶洞穴发育特征初析[J]. 中国岩溶, 1998,17(3): 196-211.
    [21] Shen C C, Wu C C, Cheng H, et al. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols[J]. Geochimica et Cosmochimica Acta, 2012, 99:71-86.
    [22] Shen C C, Cheng H, Edwards R L, et al. Measurement of Attogram Quantities of 231Pa in Dissolved and Particulate Fractions of Seawater by Isotope Dilution Thermal Ionization Mass Spectroscopy[J]. Analytical Chemistry, 2003, 75(5): 1075-1079.
    [23] 侯光良, 方修琦. 中国全新世气温变化特征[J]. 地理科学进展, 2011, 30(9): 1075-1080.
    [24] An Z S, Porter S C, Kutzbach J E, et al. Asynchronous Holocene optimum of the East Asian monsoon [J]. Quaternary Science Reviews, 2000, 19(8): 743-762.
    [25] Shi Y F, Kong Z C, Wang S M, et al. Climates and environments of the Holocene Mega thermal Maximum in China[J]. Science China Chemistry, 1994, 37(4): 481-493
    [26] Wang S W, Huang J B, Wen X Y, et al. Evidence and modeling study of droughts in China during 4-2 ka B.P.[J]. Chinese Science Bulletin, 2008, 53(14): 2215-2221.
    [27] Martín-Chivelet J, Muňoz-García M B, Edwards R L, et al. Land surface temperature changes in Northern Iberia since 4000 yr BP, based on δ13C of speleothems[J]. Global & Planetary Change, 2011, 77(1-2): 1-12.
    [28] 罗维均, 王世杰, 刘秀明. 洞穴现代沉积物δ13C值的生物量效应及机理探讨:以贵州4个洞穴为例[J]. 地球化学, 2007, 36(4): 344-350.
    [29] Genty D, Baker A, Massault M, et al. Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for δ13C variations in speleothems[J]. Geochimica et Cosmochimica Acta, 2001, 65(20): 3443-3457.
    [30] Frisia S, Fairchild I J, Fohlmeister J, et al. Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 380-400.
    [31] 刘淑华, 杨亮, 黄嘉仪,等. 川东北宋家洞高分辨率石笋δ13C记录与D/O事件5-10[J]. 地球化学, 2015, 44(5): 413-420.
    [32] 覃嘉铭, 林玉石, 张美良, 等. 桂林全新世石笋高分辨率δ13C记录及其古生态意义[J]. 第四纪研究, 2000, 20(4): 351-358.
    [33] 黄春霞. 渝黔岩溶地区碳同位素的分布和变化特征及在古环境研究中的初步应用[D]. 重庆:西南大学,2016,42-44.
    [34] 程海, 艾思本, 王先锋,等. 中国南方石笋氧同位素记录的重要意义[J]. 第四纪研究, 2005, 25(2):157-163.
    [35] 罗维均, 王世杰, 刘秀明. 洞穴现代沉积物δ13C值的生物量效应及机理探讨:以贵州4个洞穴为例[J]. 地球化学, 2007, 36(4): 344-350.
    [36] Jr F W C, Burns S J, karmann I, et al. A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subtropics during the Late Pleistocene[J]. Quaternary Science Reviews, 2006, 25(21): 2749-2761.
    [37] Duan W, Tan M, Ma Z, et al. The palaeoenvironmental significance of δ13C of stalagmite BW-1 from Beijing, China during Younger Dryas intervals inferred from the grey level profile[C]. 中国科学院地质与地球物理研究所2014年度(第14届)学术年会, 北京,2015.
    [38] Boutton T W. Stable carbon isotope ratios of natural materials: Ⅱ. Atmospheric, terrestrial, marine, and freshwater environments[M]. Carbon Isotope Techniques, 1991: 173-185.
    [39] 李廷勇, 李红春, 向晓晶,等. 碳同位素在重庆岩溶地区植被-土壤-基岩-洞穴系统运移特征研究[J]. 中国科学(地球科学), 2012(4): 526-535.
    [40] 张美良, 朱晓燕, 林玉石,等. 桂林洞穴滴水及现代碳酸钙(CaCO3)沉积的δ13C记录及其环境意义[J]. 地球学报, 2009, 30(5): 634-642.
    [41] Berkelhammer M, Sinha A, Stott L, et al. An Abrupt Shift in the Indian Monsoon 4000 Years Ago[M]. Climates, Landscapes, and Civilizations. American Geophysical Union, 2012:75-87.
    [42] Gupta A K, Anderson D M, Overpeck J T. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean[J]. Nature, 2003, 421(6921): 354-357.
    [43] Svensson A, Nielsen S W, Kipfstuhl S, et al. Visual stratigraphy of the North Greenland Ice Core Project (North GRIP) ice core during the last glacial period[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D2).
    [44] Booth R K, Jackson S T, Forman S L, et al. A severe centennial-scale drought in midcontinental North America 4200 years ago and apparent global linkages[J]. The Holocene, 2005, 15(3):321-328.
    [45] 王绍武. 全新世气候变化[M]. 北京:气象出版社, 2011:283.
    [46] Solanki S K, Usoskin I G, Kromer B, et al. Unusual activity of the Sun during recent decades compared to the previous 11,000 years[J]. Nature, 2004, 431(7012): 1084-1087.
    [47] Agnihotri R, Dutta K, Bhushan R, et al. Evidence for solar forcing on the Indian monsoon during the last millennium[J]. Earth & Planetary Science Letters, 2002, 198(3): 521-527.
    [48] O'Brien S R, Mayewski P A, Meeker L D, et al. Complexity of Holocene climate as reconstructed from a Greenland Ice Core[J]. Science, 1995, 270(5244): 1962-1964.
    [49] Schulz M, Paul A. Holocene climate variability on centennial-to-millennial time scales: 1. Climate records from the North-Atlantic realm [M]. Climate development and history of the North Atlantic realm. Springer, Berlin, Heidelberg, 2002: 41-54.
    [50] Eddy J A. The maunder minimum[J]. Science, 1976, 192: 1189-1202.
    [51] Sun Y, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2011, 5(1): 46-49.
    [52] Cai Y, Zhang H, Cheng H, et al. The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections[J]. Earth & Planetary Science Letters, 2012, 335-336(3): 135-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700