用户名: 密码: 验证码:
砷胁迫下甘蓝型油菜苗期根、下胚轴和鲜重的全基因组关联分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genome-wide association of roots,hypocotyls and fresh weight at germination stage under as stress in Brassica napus L.
  • 作者:曲存民 ; 马国强 ; 朱美晨 ; 黄小虎 ; 贾乐东 ; 王书贤 ; 赵会彦 ; 徐新福 ; 卢坤 ; 李加纳 ; 王瑞
  • 英文作者:QU Cun-Min;MA Guo-Qiang;ZHU Mei-Chen;HUANG Xiao-Hu;JIA Le-Dong;WANG Shu-Xian;ZHAO Hui-Yan;XU Xin-Fu;LU Kun;LI Jia-Na;WANG Rui;College of Agronomy and Biotechnology, Southwest University;Academy of Agricultural Sciences, Southwest University,Chongqing;
  • 关键词:甘蓝型油菜 ; 耐砷性 ; 全基因组关联分析 ; 候选基因
  • 英文关键词:Brassica napus L.;;As stress resistance;;genome-wide association studies(GWAS);;candidate genes
  • 中文刊名:XBZW
  • 英文刊名:Acta Agronomica Sinica
  • 机构:西南大学农学与生物科技学院;重庆市西南大学农业科学研究院;
  • 出版日期:2018-11-06 11:00
  • 出版单位:作物学报
  • 年:2019
  • 期:v.45
  • 基金:国家重点研发计划项目(2018YFD0100505);; 国家自然科学基金项目(31401412,31571701);; 重庆市基础与前沿研究计划重点项目(cstc2015jcyjBX0001,cstc2016shms-ztzx80010,cstc2017jcyjAX0321);; 国家现代农业产业技术体系建设专项(CARS-12);; 111人才引智基地建设项目(B12006);; 中央高校基本科研业务费专项资金(XDJK2016A005,XDJK2016B030)资助~~
  • 语种:中文;
  • 页:XBZW201902003
  • 页数:13
  • CN:02
  • ISSN:11-1809/S
  • 分类号:19-31
摘要
油菜是修复土壤重金属污染的理想作物,为筛选甘蓝型油菜耐砷性的显著关联单核苷酸多态性位点及相关候选基因,本研究以140份不同来源的甘蓝型油菜自交系为材料,测定和利用油菜60KSNP芯片对正常和砷胁迫条件下的相对根长(RRL)、相对下胚轴长(RHL)和相对鲜重(RFW)进行了全基因组关联分析。结果表明,与RRL、RHL和RFW显著关联的SNP位点分别为15、20和35个,单个SNP位点表型贡献率分别介于13.31%~24.39%、18.04%~33.82%和20.19%~25.06%之间;其中在A02、A07和C02染色体上同时存在与RRL、RHL和RFW显著关联的LD区间。基于油菜基因组信息在LD区间内共筛选到61个可能与砷胁迫相关的候选基因,其中PHT3;3、PHT1;9、GST、OTC5、NRAMP1和ZIP12等与重金属吸收和转运相关。实时荧光定量PCR分析结果表明, PHT3;3和PHT1;9是与甘蓝型油菜砷离子吸收转运相关的重要候选基因。本研究结果对于甘蓝型油菜耐砷胁迫机理的研究、性状的改良具有重要参考价值。
        Brassica napus is an optimum crop for repairing the heavy metal pollution of soil. To identify the associated SNP locus and candidate genes with arsenic(As) stress tolerance in B. napus, we measured and performed genome-wide association studies(GWAS) on relative root length(RRL), relative hypocotyl length(RHL), and relative fresh weight(RFW) of 140 rapeseed accessions by the Brassica 60 K Illumina Infinium SNP array. In total, 15 SNPs significantly associated with RRL, 20 loci with RHL, and 35 SNP with RFW were identified, and each of SNP explained 13.31%–24.39%, 18.04%–33.82%, and 20.19%–25.06% of observed phenotypic variation, respectively. The most notable significant SNPs were located on chromosomes A02, A07, and C02, which were repeatedly detected and associated with RRL, RHL, and RFW simultaneously. Based on the rapeseed genome annotation of the linkage disequilibrium(LD) regions, we predicted 61 As resistance of candidate genes, among them, PHT3;3, PHT1;9, GST, OTC5, NRAMP1, and ZIP12, were related to the heavy metal absorbing and transporting. With the results of qRT-PCR, the PHT3;3 and PHT1;9 were obviously induced by As stress treatment in roots, hypocotyls and leaves, indicating that they were the important candidate genes related to As absorption and transport in B. napus. These results provide a reference for elucidating the regulation mechanism of candidate genes and improving agronomic traits in B. napus under As stress.
引文
[1]Panaullah G M,Alam T,Hossain M B,Loeppert R H,Lauren J G,Meisner C A,Ahmed Z U,Duxbury J M.Arsenic toxicity to rice(Oryza sativa L.)in Bangladesh.Plant Soil,2008,317:31.
    [2]Finnegan P M,Chen W.Arsenic toxicity:the effects on plant metabolism.Front Physiol,2012,3:182.
    [3]谭万能,李志安,邹碧.植物对重金属耐性的分子生态机理.植物生态学报,2006,30:703-712.Tan W A,Li Z A,Zou B.Molecular mechanisms of plant tolerance to heavy metals.J Plant Ecol,2006,30:703-712(in Chinese with English abstract).
    [4]Lindsay E R,Maathuis F J M.New molecular mechanisms to reduce arsenic in crops.Trends Plant Sci,2017,22:1016-1026.
    [5]Isayenkov S V,Maathuis F J M.The Arabidopsis thaliana aquaglyceroporin At NIP7;1 is a pathway for arsenite uptake.FEBS Lett,2008,582:1625-1628.
    [6]Xu W,Dai W,Yan H,Li S,Shen H,Chen Y,Xu H,Sun Y,He Z,Ma M.Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions.Mol Plant,2015,8:722-733.
    [7]Kamiya T,Tanaka M,Mitani N,Ma J F,Maeshima M,Fujiwara T.NIP1;1,an aquaporin homolog,determines the arsenite sensitivity of Arabidopsis thaliana.J Biol Chem,2009,284:2114-2120.
    [8]Chen Y,Sun S K,Tang Z,Liu G,Moore K L,Maathuis F J M,Miller A J,McGrath S P,Zhao F J.The Nodulin 26-like intrinsic membrane protein Os NIP3;2 is involved in arsenite uptake by lateral roots in rice.J Exp Bot,2017,68:3007-3016.
    [9]Sun S K,Chen Y,Che J,Noriyuki K,Tang Z,Miller A J,Ma J F,Zhao F J.Decreasing arsenic accumulation in rice by overexpressing Os NIP1;1 and Os NIP3;3 through disrupting arsenite radial transport in roots.New Phytol,2018,https://doi.org/10.1111/nph.15190.
    [10]Chao D Y,Chen Y,Chen J,Shi S,Chen Z,Wang C,Danku J M,Zhao F J,Salt D E.Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants.PLoS Biol,2014,12:e1002009.
    [11]李洋,于丽杰,金晓霞.植物重金属胁迫耐受机制.中国生物工程杂志,2015,(9):94-104.Li Y,Yu L J,Jin X X.Mechanism of heavy metal tolerance stress of plants.China Biotech,2015,(9):94-104(in Chinese with English abstract).
    [12]Cojocaru P,Gusiatin Z M,Cretescu I.Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape(Brassica napus).Environ Sci Poll Res,2016,23:10693-10701.
    [13]Gasic K,Korban S S.Expression of Arabidopsis phytochelatin synthase in Indian mustard(Brassica juncea)plants enhances tolerance for Cd and Zn.Planta,2007,225:1277-1285.
    [14]Marchiol L,Assolari S,Sacco P,Zerbi G.Phytoextraction of heavy metals by canola(Brassica napus)and radish(Raphanus sativus)grown on multicontaminated soil.Environl Poll,2004,132:211.
    [15]Touiserkani T,Haddad R.Cadmium-induced stress and antioxidative responses in different Brassica napus cultivars.J Agric Sci Tech-IRAN,2012,14:929-937.
    [16]宋俊英.芸薹属植物对砷胁迫的反应及其机理研究.华中农业大学硕士学位论文,湖北武汉,2010.Song J Y.Responses of Brassica Species to Arsenic Stress and Their Mechanisms.PhD Dissertation of Huazhong Agriculture University,Hubei,Wuhan,China,2010.
    [17]张蕊,邓文亚,杨柳,王亚萍,肖芳枝,禾健,卢坤.盐胁迫下甘蓝型油菜发芽期下胚轴和根长的全基因组关联分析.中国农业科学,2017,50:15-27.Zhang R,Deng Y W,Yang L,Wang Y P,Xiao Y Z,He J,Lu K.Genome-wide association study of root length and hypocotyl length at germination stage under saline conditions in Brassica napus.Sci Agric Sin,2017,50:15-27(in Chinese with English abstract).
    [18]Munns R,James R A.Screening methods for salinity tolerance:a case study with tetraploid wheat.Plant&Soil,2003,253:201-218.
    [19]卢坤,王腾岳,徐新福,唐章林,曲存民,贺斌,梁颖,李加纳.甘蓝型油菜结角高度与荚层厚度的全基因组关联分析.作物学报,2016,42:344-352.Lu K,Wang T Y,Xu X F,Tang Z L,Qu C M,He B,Liang Y,Li JN.Genome-wide association analysis of height of podding and thickness of pod canopy in Brassica napus.Acta Agron Sin,2016,42:344-352(in Chinese with English abstract).
    [20]Pritchard J K,Stephens M,Donnelly P.Inference of population structure using multilocus genotype data.Genetics,2000,155:945.
    [21]Evanno G,Regnaut S,Goudet J.Detecting the number of clusters of individuals using the software structure:a simulation study.Mol Ecol,2005,14:2611-2620.
    [22]Hardy O,Vekemans X.SPAGeDi:a versatile computer program to analyse spatial genetic structure at the individual or population levels.Mol Ecol Notes,2002,2:618-620.
    [23]Wang S B,Feng J Y,Ren W L,Huang B,Zhou L,Wen Y J,Zhang J,Dunwell J M,Xu S,Zhang Y M.Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology.Sci Rep,2016,6:19444.
    [24]Tamba C L,Ni Y L,Zhang Y M.Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies.PLoS Comput Biol,2017,13:e1005357.
    [25]Chalhoub B,Denoeud F,Liu S,Parkin I A,Tang H,Wang X,Chiquet J,Belcram H,Tong C,Samans B,and 72 others.Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome.Science,2014,345:950-953.
    [26]Zhou Y,Xu D,Jia L,Huang X,Ma G,Wang S,Zhu M,Zhang A,Guan M,Lu K.Genome-wide identification and structural analysis of bZIP transcription factor genes in Brassica napus.Genes,2017,8:288.
    [27]Lu K,Li T,He J,Chang W,Zhang R,Liu M,Yu M,Fan Y,Ma J,Sun W.qPrimerDB:a thermodynamics-based gene-specific qPCR primer database for 147 organisms.Nucl Acids Res,2018,46:D1229-D1236.
    [28]Lee S H,Li C W,Koh K W,Chuang H Y,Chen Y R,Lin C S,Chan M T.MSRB7 reverses oxidation of GSTF2/3 to confertolerance of Arabidopsis thaliana to oxidative stress.J Exp Bot,2014,65:5049-5062.
    [29]Mao Z,Sun W.Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of Abscisic acid insensitive 3.J Exp Bot,2015,66:4781-4794.
    [30]Kang J,Yim S,Choi H,Kim A,Lee K P,Lopezmolina L,Martinoia E,Lee Y.Abscisic acid transporters cooperate to control seed germination.Nat Commun,2015,6:8113.
    [31]Pandey C,Khan E,Panthri M,Tripathi R D,Gupta M.Impact of silicon on Indian mustard(Brassica juncea L.)root traits by regulating growth parameters,cellular antioxidants and stress modulators under arsenic stress.Plant Physiol Biochem,2016,104:216-225.
    [32]Hatzig S V,Frisch M,Breuer F,Nesi N,Ducournau S,Wagner MH,Leckband G,Abbadi A,Snowdon R J.Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus.Front Plant Sci,2015,doi:10.3389/fpls.2015.00221.
    [33]Luo X,Ma C,Yue Y,Hu K,Li Y,Duan Z,Wu M,Tu J,Shen J,Yi B.Unravelling the complex trait of harvest index in rapeseed(Brassica napus L.)with association mapping.BMC Genomics,2015,16:379.
    [34]Li F,Chen B,Xu K,Wu J,Song W,Bancroft I,Harper AL,Trick M,Liu S,Gao G.Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed(Brassica napus L.).DNA Res,2014,21:355-367.
    [35]Chen L,Wan H,Qian J,Guo J,Sun C,Wen J,Yi B,Ma C,Tu J,Song L.Genome-wide association study of cadmium accumulation at the seedling stage in rapeseed(Brassica napus L.).Front Plant Sci,2018,9:375.
    [36]Meharg A A,Macnair M R.An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L.New Phytol,1990,116:29-35.
    [37]Shin H,Shin H S,Dewbre G R,Harrison M J.Phosphate transport in Arabidopsis:Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low-and high-phosphate environments.Plant J,2004,39:629-642.
    [38]Nagarajan V K,Jain A,Poling M D,Lewis A J,Raghothama K G,Smith A P.Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling.Plant Physiol,2011,156:1149.
    [39]Remy E,Cabrito T R,Batista R A,Teixeira M C,Sá-Correia I,Duque P.The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation.New Phytol,2012,195:356-371.
    [40]Lapis-Gaza H R,Jost R,Finnegan P M.Arabidopsis Phosphate transporter1 genes PHT1;8 and PHT1;9 are involved in root-to-shoot translocation of orthophosphate.BMC Plant Biol,2014,14:334.
    [41]Zhu W,Miao Q,Sun D,Yang G,Wu C,Huang J,Zheng C.The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana.PLoS One,2012,7:e43530.
    [42]Hamel P,Saint-Georges Y,de Pinto B,Lachacinski N,Altamura N,Dujardin G.Lachacinski N,Altamura N,Dujardin G.Redundancy in the function of mitochondrial phosphate transport in Saccharomyces cerevisiae and Arabidopsis thaliana.Mol Microbiol,2004,51:307-317.
    [43]Ortiz D F,Kreppel L,Speiser D M,Scheel G,McDonald G,Ow D W.Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter.EMBO J,1992,11:3491-3499.
    [44]孙瑞莲,周启星.高等植物重金属耐性与超积累特性及其分子机理研究.植物生态学报,2005,29:497-504.Sun R L,Zhou Q X.Heavy metal tolerance and hyperaccumulation of higher plants and their molecular mechanisms:a review.JPlant Ecol,2005,29:497-504(in Chinese with English abstract).
    [45]Mohamed S,Kheireddine O,Wyllia H M,Roquia R,Aicha D,Mourad B.Proportioning of biomarkers(GSH,GST,ache,catalase)Indicator of pollution at Gambusia affinis(Teleostei Fish)exposed to cadmium.Environ Res J,2012,2:177-181.
    [46]Guo J,Dai X,Xu W,Ma M.Over-expressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana.Chemosphere,2008,72:1020-1026.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700