用户名: 密码: 验证码:
基于光纤布拉格光栅拉锥的带宽可调微光纤马赫-曾德尔干涉仪
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bandwidth Tunable Microfiber-Assisted Mach-Zehnder Interferometer Based on Tapered-Drawing Fiber Bragg Grating
  • 作者:耿健 ; 朱晓军 ; 章国安 ; 徐晨 ; 季彦呈 ; 金丽 ; 曹娟
  • 英文作者:Geng Jian;Zhu Xiaojun;Zhang Guoan;Xu Chen;Ji Yancheng;Jin Li;Cao Juan;School of Electronics and Information, Nantong University;Nantong Research Institute for Advanced Communication Technologies;Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Soochow University;
  • 关键词:光纤光学 ; 光纤光栅 ; 拉锥光纤 ; 光纤布拉格光栅 ; 马赫-曾德尔干涉仪
  • 英文关键词:fiber optics;;micro long period fiber grating;;tapered fiber;;fiber Bragg grating;;Mach-Zehnder interferometer
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:南通大学电子信息学院;南通先进通信技术研究院;苏州大学江苏省先进光学制造技术重点实验室;
  • 出版日期:2018-11-13 10:08
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.444
  • 基金:江苏省研究生科研与实践创新计划(KYCX17_1918);; 国家自然科学基金(61371113,61401241);; 江苏重点实验室开放项目(KJS1204);; 南通大学-南通智能信息联合研究中心(KFKT2016B04);南通大学人才引进项目(03080670);; 江苏省高校科研基金(16KJB510037)
  • 语种:中文;
  • 页:GXXB201903013
  • 页数:8
  • CN:03
  • ISSN:31-1252/O4
  • 分类号:119-126
摘要
提出了一种基于光纤布拉格光栅(FBG)拉锥的带宽可调的微光纤马赫-曾德尔干涉仪(MZI),该微光纤MZI的两端为关于中心束腰光纤对称的锥形微啁啾长周期光栅(CLPG)。对拉锥后的光栅周期及折射率分布进行了建模及仿真。折射率测试结果表明,MZI透射光谱带宽的倒数与氯化钠(NaCl)溶液折射率呈线性关系,通过改变NaCl溶液折射率可以调谐透射光谱带宽。对透射光谱1550 nm处的带宽进行了测量,得到折射率调谐带宽的精度为0.64318 nm~(-1)·RIU~(-1)。
        A bandwidth tunable Mach-Zehnder interferometer(MZI) based on tapered-drawing fiber Bragg grating is presented. The two sides of this microfiber-assisted MZI are the tapered micro chirped long period fiber gratings(CLPG), which are symmetrical about the central waist. The period and refraction index of the grating after fused tapering are modelled and simulated. The refractive index test results show that the relationship between the refractive index of NaCl solution and the reciprocal of passband width is linear. The transmission bandwidth can be tuned by changing the solution concentration. The adjustable accuracy is 0.64318 nm~(-1)·RIU~(-1) obtained after the detection of the transmission bandwidth at 1550 nm.
引文
[1] Jung J, Lee Y W. Continuously wavelength-tunable passband-flattened fiber comb filter based on polarization-diversified loop structure[J]. Scientific Reports, 2017, 7: 8311.
    [2] He W, Zhu L Q, Dong M L, et al. Tuneable and stable multi-wavelength thulium-doped ring-cavity fibre laser based on Sagnac loop and Mach-Zehnder filter utilizing thin-core fibre[J]. Laser Physics, 2016, 26(12): 125102.
    [3] Zhou Y W, Sun G Y, Luo A P. Optically tunable multiwavelength fiber laser based on a Mach-Zehnder comb filter incorporating ytterbium-doped fibers[J]. Laser Physics, 2018, 28(1): 015105.
    [4] Li Y, Sun Q Z, Xu Z L, et al. A single longitudinal mode fiber ring laser based on cascaded microfiber knots filter[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2172-2175.
    [5] Yu H H, Wang Y, Ma J, et al. Fabry-Perot interferometric high-temperature sensing up to 1200 ℃ based on a silica glass photonic crystal fiber[J]. Sensors, 2018, 18(1): 273.
    [6] Huang B, Shu X W, Du Y Q. Intensity modulated torsion sensor based on optical fiber reflective Lyot filter[J]. Optics Express, 2017, 25(5): 5081-5090.
    [7] Jung J, Lee Y W. Continuously tunable polarization-independent zeroth-order fiber comb filter based on polarization-diversity loop structure[J]. Applied Physics B, 2017, 123(4): 106.
    [8] Lu Y, Lu H W, Pu H L, et al. Novel Mach-Zehnder interferometric interleaver based on fiber ring resonators[J]. Acta Optica Sinica, 2017, 37(11): 1106003. 鲁彦, 鲁怀伟, 蒲会兰, 等. 基于光纤谐振腔的新型马赫-曾德尔干涉仪型波长交错滤波器[J]. 光学学报, 2017, 37(11): 1106003.
    [9] Yin B, Wang M G, Wu S H, et al. Fiber ring laser based on MMF-PMFBG-MMF filter for three parameters sensing[J]. Optics Express, 2017, 25(25): 30946-30955.
    [10] Lu H W, Wu K J, Wei Y, et al. Study of a novel symmetrical interleaver based on ring resonator assisted mach-zehnder interferometer[J]. Acta Optica Sinica, 2012, 32(11): 1106005. 鲁怀伟, 邬开俊, 魏赟, 等. 基于对称结构的光纤谐振环辅助马赫-曾德尔干涉仪型梳状滤波器的研究[J]. 光学学报, 2012, 32(11): 1106005.
    [11] Wang Z, Zhang L M, Wang J, et al. Dual resonance interference of cascaded LPG inscribed in photonic crystal fiber[J]. Acta Optica Sinica, 2009, 29(10): 2909-2913. 王智, 张丽梅, 王晶, 等. 光子晶体光纤中级联长周期光栅双谐振波长干涉的研究[J]. 光学学报, 2009, 29(10): 2909-2913.
    [12] Xu J, Liu H H, Pang F F, et al. Cascaded Mach-Zehnder interferometers in crystallized sapphire-derived fiber for temperature-insensitive filters[J]. Optical Materials Express, 2017, 7(4): 1406-1413.
    [13] Gai L T, Li J, Zhao Y. Preparation and application of microfiber resonant ring sensors: a review[J]. Optics & Laser Technology, 2017, 89: 126-136.
    [14] Liao Y P, Wang J, Wang S S, et al. Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator[J]. Journal of Lightwave Technology, 2016, 34(23): 5378-5384.
    [15] Xian P, Feng G Y, Zhou S H. A compact and stable temperature sensor based on a gourd-shaped microfiber[J]. IEEE Photonics Technology Letters, 2016, 28(1): 95-98.
    [16] Shin J C, Kwak W G, Han Y G. Temperature-insensitive microfiber Mach-Zehnder interferometer for absolute strain measurement[J]. Journal of Lightwave Technology, 2016, 34(19): 4579-4583.
    [17] Tan Y Z, Sun L P, Jin L, et al. Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications[J]. Optics Express, 2013, 21(1): 154-164.
    [18] Chen Z Y, Wang T Y, Yan F, et al. Theoretical and experimental investigation of dynamic-shape-curve function for fused tapering optical fiber[J]. Journal of Optoelectronics·Laser, 2005, 16(11): 1291-1296. 陈振宜, 王廷云, 严方, 等. 熔融光纤拉锥动态形状函数的理论与实验研究[J]. 光电子·激光, 2005, 16(11): 1291-1296.
    [19] Erdogan T, Mizrahi V, Lemaire P J, et al. Decay of ultraviolet-induced fiber Bragg gratings[J]. Journal of Applied Physics, 1994, 76(1): 73-80.
    [20] Yin B, Li Y, Liu Z B, et al. Investigation on a compact in-line multimode-single-mode-multimode fiber structure[J]. Optics & Laser Technology, 2016, 80: 16-21.
    [21] Fu J N, Guan C Y, Zhu Z, et al. In-fiber M-Z interferometer based on cascaded long period gratings in embedded-core fiber[J]. IEEE Photonics Technology Letters, 2017, 29(21): 1876-1879.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700