用户名: 密码: 验证码:
小型分段式高分辨率中阶梯光栅光谱仪的设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of Small-Size High Resolution Echelle Grating Spectrometer with Divided Spectral Coverage
  • 作者:曹海霞 ; 赵英飞 ; 何淼 ; 王卫东 ; 王超
  • 英文作者:Cao Haixia;Zhao Yingfei;He Miao;Wang Weidong;Wang Chao;Central Iron & Steel Research Institute;NCS Testing Technology Co., Ltd.;Institute of Space Electro Optical Technology, Changchun University of Science and Technology;
  • 关键词:衍射 ; 双缝切换 ; 衍射级次干扰 ; 中阶梯光栅 ; 二维谱图
  • 英文关键词:diffraction;;double-slit switching;;diffraction order interference;;Echelle grating;;two-dimensional spectrogram
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:钢铁研究总院;钢研纳克检测技术股份有限公司;长春理工大学空间光电技术研究所;
  • 出版日期:2018-07-15 20:42
  • 出版单位:光学学报
  • 年:2018
  • 期:v.38;No.440
  • 基金:国家重大科学仪器设备开发专项(2013YQ47078103);; 国家自然科学基金青年科学基金(61701045,61805028)
  • 语种:中文;
  • 页:GXXB201811006
  • 页数:7
  • CN:11
  • ISSN:31-1252/O4
  • 分类号:43-49
摘要
由于棱镜具有色散不均匀的特点,中阶梯光栅光谱仪的二维谱图在长波波段不可避免地存在相邻衍射级次间相互干扰的情况。为了克服这一缺点,同时充分利用探测器像面,设计了一种小型分段式的中阶梯光栅光谱仪。通过对中阶梯光栅和棱镜色散原理的详细分析,确定了二者参数与探测器之间的关系,结合双缝间隔设计方法,采用双狭缝切换的方式,给出分段式中阶梯光栅光谱仪的设计方法。利用此方法将系统的波段范围165~800 nm分为165~230 nm和210~800 nm两部分,焦距设计为200 mm,分别采集双波段的二维谱图。使用光学设计软件对光学系统进行仿真,结果表明,200 nm处的实际光谱分辨率可达0.015 nm,满足设计指标的要求。
        The interference between adjacent diffraction orders is unavoidable in the two-dimensional spectrogram of an echelle grating spectrometer in the long wavelength band due to the non-uniform dispersion of prisms. To avoid this drawback and simultaneously take full advantage of the detector′s imaging plane, we design a small-size echelle grating spectrometer with a divided spectral coverage is designed The relationship between the detector and the parameters of the above two is established via the detailed analysis of the dispersion principle of echelle grating and prism. The design approach of the echelle spectrometer with a divided spectral coverage is proposed with the design idea of double-slit interval and by the way of double-slit switching. With this design approach, the wavelength range of 165-800 nm for the system is divided into 165-230 nm and 210-800 nm, the focus length is set as 200 mm, and the two-dimensional spectrograms at the two bands are collected, respectively. The ray tracing simulation to the optical system is carried out and the results show that the true spectrum resolution at 200 nm is 0.015 nm, which meets the design requirements.
引文
[1] Zhang Y F, Wu J F, Zhu Q S, et al. Optical design of high resolution two dimension echelle spectrometer[J]. Acta Optica Sinica, 2015, 35(4): 0422005. 张瑜峰, 武建芬, 朱青松, 等. 二维全谱高分辨中阶梯光谱仪光学系统设计[J]. 光学学报, 2015, 35(4): 0422005.
    [2] Yang J, Yin L, Yao X F, et al. Optical design and stray light suppression of a new portable echelle spectrometer[J]. Acta Optica Sinica, 2015, 35(8): 0812001. 杨晋, 尹禄, 姚雪峰, 等. 新型便携式中阶梯光栅光谱仪光学设计与消杂散光研究[J]. 光学学报, 2015, 35(8): 0812001.
    [3] Chen S J, Bayanheshig, Pan M Z, et al. Efficient algorithms for echelle spectrograph design and cross-dispersed spectra analysis[J]. Acta Optica Sinica, 2013, 33(10): 1030001. 陈少杰, 巴音贺希格, 潘明忠, 等. 中阶梯光栅光谱仪快速设计与谱图分析的数学模型[J]. 光学学报, 2013, 33(10): 1030001.
    [4] Furxhi O, Marks D L, Brady D J. Echelle crossed grating millimeter wave beam scanner[J]. Optics Express, 2014, 22(13): 16393-16407.
    [5] Korablev O, Montmessin F, Trokhimovsky A, et al. Compact echelle spectrometer for occultation sounding of the Martian atmosphere: design and performance[J]. Applied Optics, 2013, 52(5): 1054-1065.
    [6] Bykov S V, Sharma B, Asher S A. High-throughput, high-resolution echelle deep-UV Ramam spectrometer[J]. Applied Spectroscopy, 2013, 67(8): 873-883.
    [7] Wood M P, Lawler J E. Aberration-corrected echelle spectrometer for measuring ultraviolet branching fractions of iron-group ions[J]. Applied Optics, 2012, 51(35): 8407-8412.
    [8] Zhang R, Bayanheshig, Yang J, et al. Reduction model of the transmission prism echelle spectrometer with the C-T structure[J]. Acta Optica Sinica, 2016, 36(7): 0723001. 张锐, 巴音贺希格, 杨晋, 等. C-T型棱镜透射式中阶梯光栅光谱仪谱图还原模型[J]. 光学学报, 2016, 36(7): 0723001.
    [9] Zheng G J, Ji Z H, Yu X. Analysis and application of atomic emission spectrometry[M]. Beijing: Chemical Industry Press, 2009: 62-70. 郑国经, 计子华, 余兴. 原子发射光谱分析技术及应用[M]. 北京: 化学工业出版社,2009: 62-70.
    [10] Xin R X. Analysis of plasma emission spectral[M]. 2nd ed. Beijing: Chemical Industry Press, 2010: 85-97. 辛仁轩. 等离子体发射光谱分析[M]. 2版. 北京: 化学工业出版社, 2010: 85-97.
    [11] Koch J, Okruss M, Franzke J, et al. Element-selective detection of gas chromatographic eluates by near infrared echelle optical emission spectrometry on microwave-induced plasmas[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2004, 59(2): 199-207.
    [12] Chen S J, Qi X D, Bayanheshig, et al. A portable echelle spectrograph design for laser-induced breakdown spectroscopy[J]. Chinese Journal of Luminescence, 2013, 34(5): 672-677. 陈少杰, 齐向东, 巴音贺希格, 等. 用于激光诱导等离子体光谱分析的便携式中阶梯光栅光谱仪设计[J]. 发光学报, 2013, 34(5): 672-677.
    [13] Ebizuka N, Yokota H, Kajino F, et al. Novel direct vision prism and Wollaston prism assembly for diffraction limit applications[J]. Proceedings of SPIE, 2008, 7018: 70184S.
    [14] Hagen N, Tkaczyk T S. Compound prism design principles, I[J]. Applied Optics, 2011, 50(25): 4998-5011.
    [15] Zhu W Y, Chen S J, Han P P, et al. Echelle-emission spectrometer with divided spectral coverage[J]. Optics and Precision Engineering, 2014, 22(4): 870-876. 朱文煜, 陈少杰, 撖芃芃, 等. 分波段式中阶梯光栅原子发射光谱仪[J]. 光学 精密工程, 2014, 22(4): 870-876.
    [16] Liller W. High dispersion stellar spectroscopy with an echelle grating[J]. Applied Optics, 1970, 9(10): 2332-2336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700