用户名: 密码: 验证码:
一种航天相机微纳镜头的实现方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Design Method of Aerospace Camera Micro-nano Lens
  • 作者:安书兵 ; 练敏隆 ; 唐绍凡 ; 李瀛搏
  • 英文作者:AN Shubing;LIAN Minlong;TANG Shaofan;LI Yingbo;Beijing Institute of Space Mechanics & Electricity;Beijing Key Laboratory of Advanced Optical Remote Sensing Technology;
  • 关键词:微纳镜头 ; 无热化光机结构 ; 动态优化 ; 航天遥感
  • 英文关键词:micro-nano lens;;athermal optical-mechanical structure;;dynamic optimization;;space remote sensing
  • 中文刊名:HFYG
  • 英文刊名:Spacecraft Recovery & Remote Sensing
  • 机构:北京空间机电研究所;先进光学遥感技术北京市重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:航天返回与遥感
  • 年:2019
  • 期:v.40;No.176
  • 语种:中文;
  • 页:HFYG201902009
  • 页数:10
  • CN:02
  • ISSN:11-4532/V
  • 分类号:73-82
摘要
为了满足航天相机微纳镜头轻小化的要求,文章提出了一种适用于微纳镜头实现的光学系统。首先,以无热化的思路设计光机结构:一方面提出了"一物多用"的超轻一体化结构形式,实现了各光学部组件的集成;另一方面采用了柔性Bipod结构形式减小了热不匹配对光学系统像质的影响,减轻了热控元件的质量。然后采用动态优化的方式进一步减轻镜头结构的质量。最后,采用光机热集成分析,对镜头在大温度范围内的像质进行了验证分析。结果表明,通过上述步骤得到的微纳镜头质量超轻,静、动态性能良好,可在–40℃~70℃范围内实现无热化,满足微纳设计的要求。
        In order to meet the demand of small size and light weight for aerospace camera micro-nano lens, a feasible optical system is proposed in the paper. Firstly the structure of lens is designed with the concept of athermalisation. On the one hand, the integration of optical components is realized by using a super light integrated configuration with the idea of "one component with multiple use". On the other hand, the Bipod flexible structure is adopted to reduce the effect of thermal mismatch on the image quality of optical system,thus reducing the weight of thermal control elements. Then the dynamic optimization is adopted to further reduce the weight of lens structure. Finally, the image quality of the lens in large temperature range is verified by the optical-mechanical-thermal integrated analysis. The results show that the micro-nano lens obtained by the above steps has super-lightweight, good static and dynamic properties, and can be athermal in the range of –40℃~70℃, which meets the requirements of micro-nano design.
引文
[1]叶钊.微纳卫星光学载荷技术发展综述[J].航天器工程.2016,25(6):122-129.YE Zhao.Survey of Technological Development of Optical Payload for Micro-nano Satellite[J].Spacecraft Engineering,2016,25(6):122-129.(in Chinese)
    [2]SASIAN J M.Flat-field,Anastigmatic,Four-mirror Optical System for Large Telescopes[J].Optical Engineering,1987,26(12):1197-1199.
    [3]陈丽,沈为民,傅丹鹰,等.紧凑型长焦距四反射镜望远物镜:107966804[P].2018-04-27.CHEN Li,SHEN Weimin,FU Danying,et al.Compact Long Focal Length Four Reflector Telescope Objective:107966804[P].2018-04-27.(in Chinese)
    [4]王永杰,解永杰,马臻,等.空间反射镜新材料研究进展[J].材料导报,2016,32(7):143-147.WANG Yongjie,XIE Yongjie,MA Zhen,et al.Research Progress of New Space Mirror Materials[J].Materials Review,2016,32(7):143-147.(in Chinese)
    [5]杨秉新.空间相机用碳化硅SiC反射镜的研究[J].航天返回与遥感,2003,24(1):15-18.YANG Bingxin.Research of SiC Reflection Mirror for Space Camera[J].Spacecraft Recovery&Remote Sensing,2003,24(1):15-18.(in Chinese)
    [6]CHRZANOWSKI C.Design and Structural/Optical Analysis of a Kinematic Mount for Thetesting of Silicon Carbide Mirrors at Cryogenic Temperatures[J].Proceedings of SPIE:The International Society for Optical Engineering,2004,35(5):466-476.
    [7]曾勇强,傅丹鹰,孙纪文.空间遥感器大口径反射镜支撑结构型式综述[J].航天返回与遥感,2006,27(2):18-24.ZENG Yongqiang,FU Danying,SUN Jiwen.Summary of Support Structure Patterns of Large Mirror for Space Remote Sensor[J].Spacecraft Recovery&Remote Sensing,2006,27(2):18-24.(in Chinese)
    [8]刘湃,黄巧林,杨居奎.大口径长焦距相机主次镜支撑结构方案初步研究[J].航天返回与遥感,2014,35(3):60-67.LIU Pai,HUANG Qiaolin,YANG Jukui.Research on Support Structure between Primary and Secondary Mirror in Large-aperture and Long-focal-length Space Camera[J].Spacecraft Recovery&Remote Sensing,2014,35(3):60-67.(in Chinese)
    [9]王忠善.一种小型空间反射镜支撑结构的设计与分析[J].光学技术,2011,37(6):686-690.WANG Zhongshan.Design and Analysis for A Minitype Mirror Supporting Structure[J].Optical Technique,2011,37(6):686-690.(in Chinese)
    [10]刘强,何欣,张峰,等.反射镜无热装配中胶层厚度的计算及控制[J].光学精密工程,2012,20(10):2229-2236.LIU Qiang,HE Xin,ZHANG Feng,et al.Calculation and Control of Adhesive Layer in Reflector Athermal Mount[J].Optics and Precision Engineering,2012,20(10):2229-2236.(in Chinese)
    [11]王克军.空间遥感器反射镜组件结构设计方法[J].红外与激光工程,2016,45(11):1-11.WANG Kejun.Design Method of Reflector Component Structure of Space Remote Sensor[J].Infrared and Laser Engineering,2016,45(11):1-11.(in Chinese)
    [12]李旭,孙世君,汤天瑾.空间相机大型长条形反射镜支撑结构设计[J].航天返回与遥感,2016,37(3):91-99.LI Xu,SUN Shijun,TANG Tianjin.Design of Support Structure for Large Mirror of Space Camera[J].Spacecraft Recovery&Remote Sensing,2016,37(3):91-99.(in Chinese)
    [13]李楚琳.HyperWorks分析应用实例[M].北京:机械工业出版社,2008.LI Chulin.The Living Example of Analysis and Use of HyperWorks[M].Beijing:China Machine Press,2008.(in Chinese)
    [14]冯庆欢.基于灵敏度分析的桥式起重机箱梁结构动态优化设计[D].太原:中北大学,2017.FENG Qinghuan.Dynamic Optimization Design for Box Girder Structure of Bridge Crane Based on Sensitivity Analysis[D].Taiyuan:North University of China,2017.(in Chinese)
    [15]许加凯.大型数控回转工作台的有限元分析与优化设计研究[D].合肥:合肥工业大学,2016.XU Jiakai.Finite Element Analysis and Optimum Design Research of Large CNC Rotary Table[D].Hefei:Hefei University of Technology,2016.(in Chinese)
    [16]王伟之,高卫军,郭崇岭.空间相机结构设计中的拓扑优化及尺寸优化[J].航天返回与遥感,2012,33(6):67-73.WANG Weizhi,GAO Weijun,GUO Chongling.Topology and Size Optimization Technologies Applied in Structure Design of Space Camera[J].Spacecraft Recovery&Remote Sensing,2012,33(6):67-73.(in Chinese)
    [17]郑雪梅.基于灵敏度分析的五面加工中心床身结构优化设计[J].机械设计与制造,2012(5):165-167.ZHENG Xuemei.Optimization Design for Bed Structure of XH7910 Machining Center Based on Sensitivity Analysis[J].Machinery Design&Manufacture,2012(5):165-167.(in Chinese)
    [18]朱维兵,巫发茂,晏静江,等.拓扑优化机载控制台的整机随机振动分析与试验[J].西华大学学报(自然科学版),2017,36(1):17-23.ZHU Weibing,WU Famao,YAN Jingjiang,et al.Random Vibration Analysis and Test of Topology Optimization Airborne Console[J].Journal of Xihua University(Natural Science Edition),2017,36(1):17-23.(in Chinese)
    [19]李林.随机振动响应下空间相机支撑结构设计与试验[J].振动与冲击,2017,36(10):233-236.LI Lin.Design and Test of a Space Camera Support Structure Under Random Vibration Excitation[J].Journal of Vibration and Shock,2017,36(10):233-236.(in Chinese)
    [20]张胜兰.基于HyperWorks的结构优化设计技术[M].北京:机械工业出版社,2007.ZHANG Shenglan.The Technology of Optimization Design for Structure Based on HyperWorks[M].Beijing:China Machine Press,2007.(in Chinese)
    [21]洪清泉.OptiStruct&HyperStudy理论基础与工程应用[M].北京:机械工业出版社,2012.HONG Qingquan.OptiStruct&HyperStudy Theoretical Basis and Engineering Application[M].Beijing:China Machine Press,2012.(in Chinese)
    [22]潘大虎.航天相机主镜组件随机振动仿真分析[J].机械强度,2011,33(2):290-295.PAN Dahu.Simulation Analysis for Random Vibration of the Primary Mirror Subassembly in a Spaceflight Camera[J].Journal of Mechanical Strength,2011,33(2):290-295.(in Chinese)
    [23]YAN Xiutian,ION W J,EYNARD B.Global Design to Gain a Competitive Edge[M].London:Springer,2008.
    [24]赵高飞.某空间相机反射镜的温度变形分析[J].红外技术,2012,34(1):36-40.ZHAO Gaofei.Heat Distortion Analysis of A Reflecting Mirror Used in Space Camera[J].Infrared Technology,2012,34(1):36-40.(in Chinese)
    [25]陈浩然.反射式热红外光学系统无热化性能分析[J].科技创新导报,2014(36):87-89.CHEN Haoran.Athermalization Analysis of IR Reflective Optical System[J].Science and Technology Innovation Herald,2014(36):87-89.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700