用户名: 密码: 验证码:
透射式红外光学系统光机热集成分析方法的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Thermal Integrated Optomechanical Analysis Method of Transmissive Infrared Optical Systems
  • 作者:韩旭 ; 张健 ; 高天元 ; 张润泽
  • 英文作者:HAN Xu;ZHANG Jian;GAO Tianyuan;ZHANG Runze;Key Laboratory of Optoelectric Measurement and Optical Information Transmission Technology of Ministry of Education,School of Opto-Electronic Engineering, Changchun University of Science and Technology;
  • 关键词:红外光学系统 ; 光机热集成 ; Zernike多项式 ; 镜片面型 ; 刚体位移 ; MTF
  • 英文关键词:infrared optical system;;optical structure thermal integration;;Zernike polynomial;;face type;;rigid-body displacement;;MTF
  • 中文刊名:HWJS
  • 英文刊名:Infrared Technology
  • 机构:长春理工大学光电工程学院光电测控与光信息传输技术教育部重点实验室;
  • 出版日期:2018-12-17 19:02
  • 出版单位:红外技术
  • 年:2018
  • 期:v.40;No.312
  • 基金:国家自然科学基金青年基金(61705018)
  • 语种:中文;
  • 页:HWJS201812004
  • 页数:6
  • CN:12
  • ISSN:53-1053/TN
  • 分类号:20-25
摘要
本文采用了光机热集成分析的方法对透射式红外光学系统在温度变化条件下进行分析。首先,利用Zemax建立了F(2)为1和F(2)为2的两个光学系统,利用有限元软件Patran&Nastran对两个光学系统加载温度场进行热弹性分析,得到镜面节点变形前和变形后的位移。其次,使用Sigfit将分析得到数据进行Zernike多项式拟合,得到镜面的Zernike系数和刚体位移。最后,再将其导入到光学软件Zemax中,分别考虑镜片面型变化、刚体位移变化和镜片折射率变化3种因素对其MTF值的影响。以F(2)为1的光学系统作为主要分析对象,其结果表明在设计要求65℃(-45℃~20℃)温差下,面型变化使MTF(17 lp/mm)值下降了9.72%;刚体位移变化使MTF值下降了29.16%;折射率变化使MTF值下降到0点,已不再满足光学系统的成像质量要求。其结果表明,折射率变化才是影响红外光学系统成像质量的最主要因素。通过减少温度范围并进行光机热集成分析,得到F(2)为1的光学系统下温差范围为8℃~32℃,F(2)为2的光学系统下温差范围为6℃~34℃。在两个光学系统的温差范围下MTF值均大于0.2,综合考虑建模精度及软件计算精度,其温度最适范围为13℃~27℃。
        In this paper, the optomechanical thermal integration analysis method is used to analyze the transmissive infrared optical system under temperature variation conditions. First, two optical systems—F#1 and F#2—were established by Zemax. The finite element software Patran & Nastran was used to perform thermoelastic analysis on the loading temperature fields of the two optical systems to obtain the displacement of the mirror nodes before and after deformation. Secondly, using Sigfit, the data obtained from the analysis is fitted to the Zernike polynomial to obtain the Zernike coefficient and the rigid body displacement of the mirror. Finally, it is introduced into the optical software Zemax, which considers the influence of lens surface change, rigid body displacement change, and lens refractive index change on its MTF value. The optical system with F# is the main analysis object. The results demonstrate that the surface shape changes the MTF(17 lp/mm) value by 9.72% when the design requires a 65℃(-45℃–20℃) temperature difference; the displacement of the rigid body reduces the MTF value by 29.16%; the change in refractive index causes the MTF value to drop to zero, which no longer meets the imaging requirements of the optical system. The results show that refractive index change is the most important factor affecting the imaging quality of infrared optical systems. By reducing the temperature difference range and performing optomechanical thermal integration analysis, the temperature difference for the optical system with F# 1 is 8℃ to 32℃, and the temperature difference for the optical system with F# 2 is 6℃ to 34℃. The MTF values are greater than 0.2 in the temperature range of the two optical systems. Considering the modeling accuracy and software calculation accuracy, the optimum temperature range is 13℃–27℃.
引文
[1]Forman S E,Sultana J A.Evaluation of mirror thermal distortions from temperature measurements[C]//Proceedings of SPIE,1990,1303:65-77.
    [2]潘越,徐熙平,乔杨.变焦红外双波段投影镜头的光机热集成分析[J].光学学报,2018(5):0522001-1-0522001-8.PAN Yue,XU Xiping,QIAO Yang.Optical-structural-thermal analysis of zoom infrared dual-band projection lens[J].Acta Optica Sinica:2018(5):0522001-1-0522001-8.
    [3]左腾,吴耀.中波红外镜头光机热集成设计分析研究[J].光学与光电技术,2016,14(3):67-72.ZUO Teng,WU Yao.Integrated opto-mechanical-thermal design and analysis of mid-wave infrared lens[J].Optics and Optoelectronic Technology,2016,14(3):67-72.
    [4]张玉石,韩旭,付跃刚.双色红外光学系统结构的设计与分析[J].计算机辅助工程,2013,22(S1):470-473.ZHANT Yushi,HAN Xu,FU Yuegang.Structure design and analysis on dual band infrared optical system[J].Computer Aided Engineering,2013,22(S1):470-473.
    [5]韩旭,焦海丽.大口径红外变焦投影系统环境适应性研究[J].长春理工大学学报:自然科学版,2015,38(6):16-20.HAN Xu,JIAO Haili,Research on environmental adaptability of large diameter infrared zoom projection system[J].Journal of Changchun University of Science and Technology:Natural Science Edition,2015,38(6):16-20.
    [6]姬文晨,张宇,黄攀,等.红外镜头的热光学特性分析[J].激光与红外,2015,45(12):1477-1481.JI Wenchen,ZHANG Yu,HUANG Pan,et al.Analysis of the thermal optical properties of infrared lens[J].Laser and Infrared,2015,45(12):1477-1481.
    [7]姬文晨,张宇,李茂忠.透射式红外光学系统的光机热集成分析[J].红外技术,2015,37(8):691-695.JI Wenchen,ZHANG Yu,LI Maozhong.Integrated optomechanical-thermal analysis of refractive infrared optical system[J].Infrared Technology,2015,37(8):691-695.
    [8]赵晓东,王晶.米级口径经纬仪保护窗口镜面变形分析[J].中国光学,2018,11(4):654-661.ZHAO Xiaodong,WANG Jing.Analysis of the mirror deformation of one-meter theodolite protective window[J].Chinese Optics,2018,11(4):654-661.
    [9]杨怿,陈时锦,张伟.空间光学遥感器光机热集成分析技术综述[J].光学技术,2005(6):114-118,121.YANG Yi,CHEN Shijin,ZHANG Wei.Review of thermalstructural-optical integrated analysis of space remote sensor[J].Optical Technique,2005(6):114-118,121.
    [10]李福,阮萍,徐广州,等.红外镜头的光机热集成分析研究[J].应用光学,2011,32(3):385-388.LI Fu,RUAN Ping,XU Guangzhou,et al.Integrated optomechanical-thermal analysis of infrared lens[J].Journal of Applied Optics,2011,32(3):385-388.
    [11]刘家国,李林.光机热集成分析中数据转换接口研究[J].北京理工大学学报,2007(5):427-431.LIU Jiaguo,LI Lin.Stduy on the data transfer interface in the thermalstructural-optical integrated analysis[J].Transactions of Beijing Institute of Technology,2007(5):427-431.
    [12]Patrick A Coronato,Richard C Juergens.Transferring FEA results to optics codes with Zernikes:a review of techniques[C]//Proceedings of SPIE,2003,5176:1-8.
    [13]Keith B Doyle,Victor L Genberg,Gregory J Michels.Integrated Optomechanical Analysis[M].Second Edition:SPIE Press,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700