用户名: 密码: 验证码:
基于ZigBee的OPGW短路试验无线温度测试系统
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Wireless temperature test system for OPGW short circuit test based on ZigBee
  • 作者:伏丽娜 ; 杨桂松 ; 郭毅 ; 于晶 ; 陈晓阳
  • 英文作者:FU Li'na;YANG Guisong;GUO Yi;YU Jing;CHEN Xiaoyang;School of Optical-Electronical and Computer Engineering,University of Shanghai for Science and Technology;Shanghai Electric Cable Research Institute Co.,Ltd.;
  • 关键词:ZigBee ; OPGW ; 短路 ; 无线
  • 英文关键词:Zig Bee;;OPGW;;short-circuit;;wireless
  • 中文刊名:GTXS
  • 英文刊名:Optical Communication Technology
  • 机构:上海理工大学光电信息与计算机工程学院;上海电缆研究所有限公司;
  • 出版日期:2018-12-24 17:20
  • 出版单位:光通信技术
  • 年:2019
  • 期:v.43;No.292
  • 基金:国家重点研发计划项目(2016YFB0901200)资助
  • 语种:中文;
  • 页:GTXS201901010
  • 页数:5
  • CN:01
  • ISSN:45-1160/TN
  • 分类号:46-50
摘要
国内无线技术与光纤复合架空地线(OPGW)短路电流试验相结合的测试技术一直处于研究空白阶段。根据光功率计和双波长稳定光源的合理搭配,组成满足试验要求的光衰减测试系统;基于ZigBee无线测温技术和数据采集系统的有机结合,组成适用于OPGW-24B1-72样品的短路试验测温系统;通过光衰减测试系统与测温系统的组合,建立一种OPGW短路试验无线温度测试系统并进行试验。试验中样品光缆的最高温度约为161℃,光纤永久最大衰减约为0.01dB/fiber。试验结果证明:基于ZigBee的OPGW短路试验无线温度测试系统不仅具有可操作性,而且能大程度缩短准备时间,提高了在大电流试验现场设备和人员的安全系数,并进一步简化了测试现场的线路布局。
        The test technology combining the domestic wireless technology with the optical composite overhead ground wire(OPGW) short-circuit current test has been in the research blank. According to the reasonable combination of the optical power meter and the dual-wavelength stable light source, a light attenuation test system that meets the test requirements is formed. Based on the organic combination of Zig Bee-based wireless temperature measurement technology and data acquisition system, a short-circuit test temperature measurement system suitable for OPGW-24 B1-72 samples is formed. Through the combination of the optical attenuation test system and the temperature measurement system, an OPGW short-circuit test wireless temperature test system is realized and established. After the test, the maximum temperature of the sample cable is about 161℃, and the permanent maximum attenuation of the fiber is about 0.01 dB/fiber. The experiment results prove that the proposed system is operable and greatly shortens the preparation time, improves the equipment and personnel safety factor at the high-current test site, and simplifies the circuit layout of the test site.
引文
[1]张云鹏,季田,魏华勇.复杂结构输电线路接地短路及光纤复合架空地线电流计算[J].电力系统自动化,2015(16):132-137.
    [2] Power System Communications Committee. Standard for Testing and Performance for Optical Ground Wire(OPGW)for Use on Electric Utility Power Lines, IEEE 1138-2009[S]. New York:IEEE-SA Standards Board,2009.
    [3]张强.光纤复合地线光缆短路测试及热稳定性研究[D].大连:大连理工大学,2006.
    [4]全国电线电缆标准化技术委员会.光纤复合架空地线(OPGW),JB/T8999-1999[S].北京:机械工业出版社,1999.
    [5] FARHANGI H. The Path of the Smart Grid[J]. IEEE Power&Energy Magazine,2010,8(1):18-28.
    [6]陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-7.
    [7]冯奕军,翟柱新,邓艺娜.基于拉曼散射的分布式OPGW温度测量[J].西南师范大学学报(自然科学版),2016,41(12):96-100.
    [8]涂洁,李炼炼,范鹏,等.基于受激布里渊散射的OPGW光纤测温研究[J].电子测量技术,2018,41(6):129-133.
    [9]中国电力企业联合会.光纤复合架空地线,DL/T 832-2016[S].北京:中国电力出版社,2016.
    [10] International electrotechnical commission, Short-Circuit Currents Calculation of Effects-Part1:Definitions and Calculation Methods, IEC 60865-1[S]. Switzerland:IEC Central Office, 2011.
    [11]黄新波,罗兵,刘存孝.采用ZigBee芯片的无线加速度传感器网络节点的实现[J].高电压技术,2010,36(8):1962-1969
    [12]梁湖辉,张峰,常冲.基于ZigBee的变电站监测报警系统[J].电力系统保护与控制,2010,38(12):121-124.
    [13]周湶,马小敏,陈伟根,等.基于ZigBee和零序电流增量法的配网单相接地故障定位方法[J].电力系统保护与控制,2012,40(9):62-68.
    [14]谢燕辉.基于ZigBee技术的可再生能源测控网络设计[D].福建:福建师范大学,2014.
    [15]林秀钦,付华军.光纤复合架空地线(OPGW)短路电流试验[J].光通信研究,2004(2):59-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700