用户名: 密码: 验证码:
去离子水对重力热管传热特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of deionized water on heat transfer characteristics of gravity heat pipe
  • 作者:张云峰 ; 夏寻 ; 刘昱 ; 李涛 ; 周洋
  • 英文作者:ZHANG Yun-feng;XIA Xun;LIU Yu;LI Tao;ZHOU Yang;School of Energy and Power Engineering,Changsha University of Science and Technology;
  • 关键词:重力热管 ; 传热性能 ; 输入功率 ; 充液率 ; 等效对流传热系数
  • 英文关键词:gravity heat pipe;;heat transfer performance;;input power;;liquid filling rate;;equivalent convective heat transfer coefficient
  • 中文刊名:HNQG
  • 英文刊名:Journal of Changsha University of Science & Technology(Natural Science)
  • 机构:长沙理工大学能源与动力工程学院;
  • 出版日期:2018-06-28
  • 出版单位:长沙理工大学学报(自然科学版)
  • 年:2018
  • 期:v.15;No.58
  • 基金:湖南省科技厅科研项目(2011GK3901);; 长沙理工大学研究生科研创新项目(CX2016SS10)
  • 语种:中文;
  • 页:HNQG201802014
  • 页数:7
  • CN:02
  • ISSN:43-1444/N
  • 分类号:97-103
摘要
为了深入研究重力热管的传热特性,设计并搭建了重力热管系统试验台,以去离子水为工质,在不同输入功率Q和充液率FR下对热管外壁温度进行了试验。根据外壁温度数据,分析了该热管的等温性,计算了等效对流传热系数,并以此评价其传热性能。研究结果表明,充液率在35%~40%范围内,等效对流传热系数随输入功率的增加而减小;充液率在50%~70%范围内持续增加时,等效对流传热系数先缓慢增加,当超过一定值后又缓慢减小,且输入功率为40 W时,等效对流传热系数较高,热管有较好的传热性能;反之,当输入功率为定值时,热管等效对流传热系数的变化与充液率的变化相一致,即先跳跃式提升,达到最高值后缓慢下降;此外,在输入功率为40 W、充液率为50%的工况下,存在最高等效对流传热系数为3 190.782 W·m-2·K-1,即认为重力热管在此时传热性能最佳。
        An experimental platform of the gravity heat pipe system was designed and built,in order to deeply study the heat transfer characteristics of gravity heat pipe.Using deionized water as the working medium,the temperature of the outer wall of the heat pipe was tested at different input power Qand liquid filling rate FR.According to the outer wall temperature data,the average temperature performance of the heat pipe is analyzed;the equivalent convective heat transfer coefficient is calculated to evaluate its heat transfer performance.The results show that the equivalent convective heat transfer coefficient decreases with the increase of input power when the filling rate is within 35%~40%;and it slowly increases when the filling rate continues to increase from 50%to 70%.When it exceeds a certain value,it slowly decreases after a period of stabilization.And when the input power is 40 W,the equivalent convection heat transfer coefficient is higher,and the heat pipe has better heat transfer performance.Conversely,when the input power is constant,equivalent convective heat transfer coefficient of the heat pipe is consistent with the change of the liquid filling rate,the first skip lift,after reaching the highest value,slowly decline.In addition,at the input power of 40 W,liquid filling rate at 50%,there is the highest equivalent convection heat transfer coefficient of 3 190.782 W·m-2·K-1,that is gravity heat pipe at this time the best heat transfer performance.
引文
[1]支浩,汤慧萍,朱纪磊.换热器的研究发展现状[J].化工进展,2009,28(S1):338-342.ZHI Hao,TANG Hui-ping,ZHU Ji-lei.Research and development of heat exchangers[J].Chemical Industry and Engineering Progress,2009,28(S1):338-342.
    [2]涂福炳,武荟芬,张岭,等.径向热管换热器壳程数值模拟及结构参数优化[J].中南大学学报:自然科学版,2012,43(5):1975-1983.TU Fu-bing,WU Hui-fen,ZHANG Ling,et al.Numerical simulation and optimization of structural parameters of radial heat pipe heat exchanger[J].Journal of Central South University:Natural Science,2012,43(5):1975-1983.
    [3]沈超,余鹏,张东伟,等.平行流热管换热器传热传质特性的数值模拟研究[J].工程热物理学报,2017,38(6):1309-1312.SHENG Chao,YU Peng,ZHANG Dong-wei,et al.Numerical simulation of heat and mass transfer in a parallel flow heat exchanger[J].Journal of Engineering Thermophysics,2017,38(6):1309-1312.
    [4]徐洪宝,孙铁,杨雪峰.热管换热器内部流动与换热的数值模拟[J].热能动力工程,2016,31(9):20-26.XU Hong-bao,SUN Tie,YANG Xue-feng.Numerical simulation of internal flow and heat transfer of heat pipe heat exchanger[J].Journal of Engineering for Thermal Energy and Power,2016,31(9):20-26.
    [5]Zhang J X,Wang L.Effect of air on condensation in a non-vacuum gravity heat pipe[J].Applied Thermal Engineering,2017(114):255-263.
    [6]张劲草,辛公明,陈岩,等.蒸发段和冷凝段变化对重力热管性能的影响[J].化工学报,2016,68(4):1343-1348.ZHANG Jin-cao,XIN Gong-ming,CHEN Yan,et al.Effect of evaporation section and condensation section variation on performance of gravity heat pipe[J].Journal of Chemical Industry and Engineering,2016,68(4):1343-1348.
    [7]王鑫煜.内螺纹重力热管强化传热特性研究[D].济南:山东大学,2013.WANG Xin-yu.Heat transfer enhancement characteristics investigation of gravity heat pipe with internal helical microfin[D].Jinan:Shandong University,2013.
    [8]姜峰,刘泽,王兵兵,等.三相流闭式重力热管的传热性能[J].天津大学学报:自然科学版,2013,46(6):553-558.JIANG Feng,LIU Zhe,WANG Bing-bing,et al.Heat transfer performance of three-phase flow closed gravity heat pipe[J].Journal of Tianjin University:Science and Technology,2013,46(6):553-558.
    [9]李盈盈,杨峻.新型重力热管换热性能的研究[J].工业安全与环境,2014,40(10):18-21.LI Ying-ying,YANG Jun.Investigation on heat transfer characteristic of a novel gravity-assisted heat pipe[J].Industrial Safety and Environmental Protection,2014,40(10):18-21.
    [10]李鑫.变工况重力热管传热特性研究[D].济南:山东大学,2016.LI Xin.Heat transfer characteristics investigation of gravity heat pipe under variable conditions[D].Jinan:Shandong University,2016.
    [11]刘敏.重力热管传热极限影响因素研究[D].广州:华南理工大学,2016:61-70.LIU Min.The research on factors influencing heat transfer limit of gravity heat pipe[D].Guangzhou:South China University of Technology,2016:61-70.
    [12]程冉冉.重力热管换热器传热分析与数值模拟[D].镇江:江苏科技大学,2016.CHENG Ran-ran.Heat transfer analysis and numerical simulation of gravity heat pipe heat exchanger[D].Zhenjiang:Jiangsu University of Science and Technology,2016.
    [13]战洪仁,张海松,李春晓,等.重力热管流动与传热特性的数值研究[J].动力工程学报,2017,37(7):540-545.ZHAN Hong-ren,ZHANG Hai-song,LI Chun-xiao,et al.Simulation study on flow and heat-transfer characteristics of gravity heat pipes[J].Journal of Chinese Society of Power Engineering,2017,37(7):540-545.
    [14]张云峰,罗嵩容,罗稀玉,等.重力热管内水相变换热的数值模拟[J].长沙理工大学学报:自然科学版,2016,13(1):69-74.ZHANG Yun-feng,LUO Song-rong,LUO Xi-yu,et al.Number simulation of phase-change heat transfer in a gravity heat pipe charged with water[J].Journal of Changsha University of Science and Technology:Natural Science,2016,13(1):69-74.
    [15]Barzi Y M,Assadi M.Evaluation of a thermosyphon heat pipe operation and application in a waste heat recovery system[J].Experimental Heat Transfer,2014,28(5):493-510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700